你的位置:首页 > 电路保护 > 正文

取样+放大一体化的电流采样设计

发布时间:2023-01-26 责任编辑:lina

【导读】在一些小功率的实际应用中,若要采集电流也是一件头疼的事,要么成本高,要么取样电阻功率消耗过大。比如一些直流无刷电机,100W以内,220V供电电流也就不到500mA。采样电阻用1Ω的话,最大压降0.5V,有点小。再加一级运算放大器,成本又高。若是采样电阻6.8Ω,最大压降3.4V,这个采集就不成问题了,但是采样电阻的功耗是多少呢?差不多2W了,自身发热太厉害。本文作为电流采样的进阶篇,当然得有些技术含量,否则体现不出价值来,且让我一一道来。


在一些小功率的实际应用中,若要采集电流也是一件头疼的事,要么成本高,要么取样电阻功率消耗过大。比如一些直流无刷电机,100W以内,220V供电电流也就不到500mA。采样电阻用1Ω的话,最大压降0.5V,有点小。再加一级运算放大器,成本又高。若是采样电阻6.8Ω,最大压降3.4V,这个采集就不成问题了,但是采样电阻的功耗是多少呢?差不多2W了,自身发热太厉害。本文作为电流采样的进阶篇,当然得有些技术含量,否则体现不出价值来,且让我一一道来。


主要采样负载RL的电流,采集电流之后再乘以负载工作电压就可知道当前的功率。负载工作电压值容易获得,对负载电压用电阻进行分压取样即可。本文主要讲解一种新的电流取样方式,取样+放大一体化,并且实现电路最简化。


模拟电路没学好的话可能就比较吃力了,有原理图也看不懂。若看起来别扭,不好分析,我再改变一下,根据应用电路画出等效电路如下图。


取样+放大一体化的电流采样设计


可以看出负载电流IL与三极管Q1发射极的电流之比就是R3与电流采样电阻Rs之比,也即R3上的压降绝对值等于Rs上的压降绝对值,只不过是方向相反。R3与Rs之比就相当于电流放大倍数。这就是它的绝妙之处,现在我们来看实际应用情况。


为方便计算及观察,设整机最大功率为62W,采样电阻Rs为1Ω。负载电压为220V,整流滤波后约310V。那么负载电流为0.2A。采样电阻Rs上的压降为0.2A*1Ω = 0.2V。


一个带电流检测和放大功能的电路就设计完成了。AD直接采样Vo,无需添加电压放大器,成本低廉,三极管Q2也可以用二极管替代。但是为了获得更好的精度,需要两个PN结压降相互抵消。所以用2个相同的三极管,其中一个三极管作放大,另一个三极管只用其BE极之间的PN结而已。电阻R1尽量取大一些,这样对精度也会有好处。


影响此方案精度的主要原因就在于计算过程中的两个“约等于”,具体原因有如下两个方面。1. 两个PN结始终存在差异,不能完全抵消而产生误差。2. Q1的发射极电流并不完全等于集电极电流。


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:

如何利用光传感电路来降低光电二极管带宽和噪声影响

如何掌握PLC触摸屏控制电机的正反转

通过蓝牙控制智能LED调光器

通过示波器测试SPC协议解码

功率分析仪在IEC谐波的测试应用


特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索

关闭

关闭