你的位置:首页 > EMC安规 > 正文

EMI解决方法之多层PCB设计

发布时间:2014-09-03 责任编辑:stone

【导读】解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。

我们知道,在进行电路设计时,为了提高产品的性能,我们必须要考虑到其所受电磁干扰情况。解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。

 EMI解决方法之多层PCB设计

电源汇流排

在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由於电容呈有限频率响应的特性,这使得电容 无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要 的共模EMI干扰源。我们应该怎么解决这些问题?

就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。

当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。

为了控制共模EMI,电源层要有助於去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什麽程度才算好?问题 的答案取决於电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等 效电容约为75pF。显然,层间距越小电容越大。

上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在 100到300ps范围的器件将占有很高的比例。对於100到 300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小於1mil的分层技术,并用介电常数很高的材料代替FR4介 电材料。现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。

尽管未来可能会采用新材料和新方法,但对於今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理高端谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。

电磁屏蔽

从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对於电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。

PCB堆叠

什麽样的堆叠策略有助於屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层上流动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍后讨论。

4层板

4层板设计存在若干潜在问题。首先,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。

如果成本要求是第一位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用於板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。

第一种为首选方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也 低。从EMI控制的角度看,这是现有的最佳4层PCB结构。第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间 阻抗和传统的4层板一样欠佳。

如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。

6层板

如果4层板上的元件密度比较大,则最好采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。

第一例将电源和地分别放在第2和第5层,由於电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。

相关阅读:

EMI滤波器:还得掌握这些设计方法

试比较锂离子电池不同的电路保护方案

要采购电容器么,点这里了解一下价格!
特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭