-
USB Type-C电源设计面临的三大问题
USB Type-C™标准正在迅速获得推动力,其关键亮点之一是可通过USB接口提供高达100瓦功率的机制。USB功率传输(USB-PD)功能的采用如今已成为AC适配器、笔记本电脑、平板电脑、智能手机等移动领域的主要趋势。在下一代USB设计中实现电源传输功能时,身份验证,过压保护和紧凑外形是关键挑战。
2018-12-05
USB Type-C 电源设计
-
如何区分聚合物钽电容和普通钽电容?
钽电容全称是钽电解电容(也有人叫钽质电容器),属于电解电容的一种,使用金属钽做介质,不像普通电解电容那样使用电解液,因此适合在高温下工作,是电容器中体积小而又能达到较大电容量的产品,在电源滤波、交流旁路等用途上少有竞争对手。
2018-11-29
聚合物钽电容 普通钽电容
-
SiC MOSFET换流回路杂散电感的提取方法
针对目前杂散电感提取方法存在的问题,本文提出了一种适用于SiC MOSFET换流回路杂散电感的提取方法,并基于SiC功率器件的开关瞬态特性测试平台对本文所提杂散电感提取方法的可行性进行了验证。与现有的间接测量方法不同,该方法是基于SiC MOSFET开关瞬态振荡频率求解换流回路杂散电感。
2018-11-29
SiC MOSFET 电感
-
功率MOSFET线性区负温度系数
功率MOSFET工作在线性区用来限制电流,VGS电压低,通常在负温度系数区,局部单元过热导致其流过更大的电流,结果温度更高,从而形成局部热点导致器件损坏,这样就形成一个热电不稳定性区域ETI (Electro Thermal Instability),发生于VGS低于温度系数为0(ZTC)的负温度系数区。
2018-11-29
MOSFET 负温度系数 电势
-
电源造成的车辆怠速启停不稳问题该怎么办?
怠速启停时的电池电压下降引起的功能不全、怠速启停后的电池电量波动(启动)引起的误动作等问题也是亟需要解决的问题。为此,罗姆开发出了优异的低消耗电流和稳定性能(瞬态响应特性,以下简称“响应性能”)的升降压电源芯片组。
2018-11-28
电源 怠速启停
-
熟知引起电源模块发热的四大原因
一摸电源模块的表面,热乎乎的,模块坏了?且慢,有一点发热,仅仅只是因为它正努力地工作着。但高温对电源模块的可靠性影响极其大!基于电源模块热设计的知识,这一次,我们扒一扒引起电源模块发热的原因。
2018-11-28
电源模块 电源发热
-
功率MOSFET线性区工作设计
功率MOSFET有三个工作状态,在漏极导通特性曲线上,对应的是三个工作区:截止区,线性区和可变电阻区。注意到:MOSFET的线性区有时也称为:恒流区或饱和区。
2018-11-28
MOSFET 开关电源
-
分享30条开关电源工作小技巧
电源开发是个技术活,也是个累活,工作繁杂时难免会犯一些低级小错误。这些错误,会导致一系列的连锁反应,需要采购部、生产部、PM、品管部、业务部、工程部等众多部门来配合,以修正你的那个小错误。
2018-11-27
开关电源 变压器 电阻器
-
你知道SiC MOSFET驱动负压应该如何选择吗?
SiC MOSFET与Si MOSFET在特定的工作条件下会表现出不同的特性,其中重要的一条是SiC MOSFET在长期的门极电应力下会产生阈值漂移现象。以下将讲解如何通过调整门极驱动负压,来限制SiC MOSFET阈值漂移的方法。
2018-11-27
MOSFET 驱动负压 Vth漂移
- 国产芯片与系统深度融合!兆易创新联袂普华软件破局汽车电子
- 揭秘未来劳动力:贸泽与Molex新电子书解析机器人技术变革
- 台积电大陆芯片生产遇阻,美国豁免撤销加速国产替代进程
- 2025年Q2全球DRAM营收突破316亿美元,创近年单季最高涨幅
- 200W开关功率:Pickering 600系列继电器通吃高压高能场景
- 中国电子展组委会联袂电子制造产业联盟:四地探企,智启新程
- 电子电路无声卫士:扼流线圈技术演进、应用生态与全球供应链格局
- 未来工厂:利用搭载人工智能的传感器在边缘做出决策——第2部分
- 超越传统:空心线圈如何重塑RF与自动化领域——工程师必备选型指南
- 智链PCB 数聚大湾区丨广东广东制造业数字化转型50人会联合金百泽科技举办第十三期圆桌会
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall