-
什么决定工频逆变电源中的输出波形?
本文主要探讨了工频逆变电源中电流波形的呈现方式,并对波形形成的决定性因素进行了分析。对于工频逆变电源输出波形感兴趣的朋友不妨花上几分钟来阅读本文,相信会有意想不到的收获。
2015-11-23
工频逆变电源 输出波形
-
干货分享:详悉LED驱动电源中的电容降压原理
按照如今的LED驱动电源设计的趋势来看,要想在市场上站稳脚跟,就必须要采用电容降压的原理来设计驱动电路。利用电容降压原理设计的LED电源产品都具有良好的稳定性,成本低。本文就来详悉LED驱动电源中的电容降压原理。
2015-11-23
LED驱动电源 电容降压
-
详解正激式电源变压器的优缺点
刚刚接触电源变压器的工程师都曾遇到过这种情况,就是在正激式滴啊元变压器和反激式电源变压器之间模棱两可,正激式电源变压器作为较为常见的电源变压器有哪些优缺点呢?本文就由小编为你简要介绍一下正激式电源变压器的优缺点。
2015-11-23
正激式 电源变压器
-
艾利丹尼森全新阻燃标签解决方案有助提升电池安全性
昨日,艾利丹尼森推出全新阻燃标签解决方案:这款由带阻燃涂层的PET面材和阻燃粘胶剂所构成的标签材料,全结构达到UL94标准规定的VTM-0最佳防火等级,可有效降低火灾风险。
2015-11-20
艾利丹尼森 阻燃材料 电池
-
安森美半导体以24亿美元现金收购飞兆半导体,造就实力雄厚的电源半导体领袖
安森美半导体公司(ON Semiconductor)与飞兆半导体国际公司(Fairchild Semiconductor International )已共同宣布达成最终协议,安森美半导体公司将以每股20美元的现金收购飞兆半导体,整项现金交易近24亿美元。此次收购创造电源半导体市场上的一个全球领袖,合并收入约为50亿美元,业务多元化,涉及...
2015-11-20
安森美半导 飞兆半导体
-
关于压电陶瓷驱动中关于升压电感的二三问
很多人都对压电陶瓷驱动电源中有关升压电感的问题感兴趣,本文讲解的是压电陶瓷驱动电源中的升压电感的相关介绍,大家跟随小编一起来看看。
2015-11-20
压电陶瓷 升压电感
-
升压芯片UC2843为什么不能正常工作?
升压芯片的作用就是在电压不足的情况下帮助电路正常运行。但是不可避免的是升压芯片也会出现无法工作的现象。本文详细介绍升压芯片UC2843为什么不能在电路中正常工作。
2015-11-20
升压芯片 UC2843
-
适合电源分配网络应用的预测性能量平衡控制
电源完整性(PI)和电源分配网络(PDN)设计如今是所有高速、高性能和低噪声电子电路设计的中心要素。取得最优性能的第一条规则是保持电源分配路径的阻抗幅度小于某个特定值,这个值通常被称为目标阻抗。第二条规则是保持电源分配阻抗在频域尽可能平坦。半导体公司正在试图引入采用非线性控制、多个环路...
2015-11-19
电源分配网络 预测性能量 平衡控制 PI
-
疑问解答:IO引脚用上拉电阻搭配拉电流负载影响多大?
提到51单片机的IO引脚,很多人就会联想到上拉电阻。在单片机的相关问题中,很多问题同样与上拉电阻的息息相关,在本文中,小编将为大家介绍51单片机中IO引脚与上拉电阻与拉电流负载对电路造成的不良影响。
2015-11-18
IO引脚 51单片机 电流负载
- 差分振荡器设计的进阶之路:性能瓶颈突破秘籍
- 电感技术全景解析:从基础原理到国际大厂选型策略
- 线绕电感技术全景:从电磁原理到成本革命
- 新思科技:通过EDA和IP助力中国RISC-V发展
- 安谋科技CEO陈锋:立足全球标准与本土创新,赋能AI计算“芯”时代
- 360采购帮开店流程详解:解锁AI厂长分身,实现7×24小时获客
- 告别拓扑妥协!四开关µModule稳压器在车载电源的实战演绎
- 多相并联反激式转换器:突破百瓦极限的EMI优化设计
- 中断之争!TI TCA6424对决力芯微ET6416:国产GPIO芯片的逆袭
- 毫米级电源革命:三款旗舰LDO如何重塑终端供电格局?
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall