-

电容器的发热特性
我们一般讨论电容的时候会关注电容的温度特性,即:温度对容值等参数的影响。但是我们知道电容本身也是会发热的:只要有电阻,又有电流,就会有电能转化为热能。
2019-08-07
电容器 发热
-

殊途同归,从两个角度解释电容退耦原理
采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。
2019-08-07
电容 退耦 原理
-

温度测量:如何消除线阻抗引入的误差?
工业现场环境复杂,传感器距离控制器往往很远,对于测温传感器PT100,传感器阻值变化0.385Ω/℃,因此过长导线的线阻抗不可忽视,消除导线引来的测量误差,是提高PT100测量精度必须解决的问题。
2019-08-06
温度测量 线阻抗 误差
-

当电子元件性能下降,如何保护您的模拟前端?
EOS是一个通用术语,表示因为过多的电子通过相应路径试图进入电路,导致系统承受过大压力。有一点需要注意,这是一个随功率和时间变化的函数。
2019-08-06
电子元件 性能下降 模拟前端
-

屏蔽效能分析
屏蔽效能表现了屏蔽体对电磁波的衰减程度。由于屏蔽体通常能将电磁波的强度衰减到原来的百分之一至万分之一, 因此通常用分贝(dB)来表述。一般的屏蔽体的屏蔽效能可达40 dB, 军用设备的屏蔽体的屏蔽效能可达60 dB, TEMPEST设备的屏蔽体的屏蔽效能可达80 dB以上。
2019-08-06
屏蔽 效能分析
-

耦合与退耦,上拉与下拉!
耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。
2019-08-06
耦合 退耦 上拉 下拉
-

电源系统开关控制器的MOSFET选择
MOSFET广泛使用在模拟电路与数字电路中,和我们的生活密不可分。MOSFET的优势在于:首先驱动电路比较简单。
2019-08-05
电源系统 开关控制器 MOSFET
-

MOS管简介以及判定电极、放大能力的方法
MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。
2019-08-05
MOS管 判定电极 放大能力
-

负压是怎么产生的?附电路详细分析
在电子电路中我们常常需要使用负的电压,比如说我们在使用运放的时候常常需要给他建立一个负的电压。下面就简单的以正5V电压到负电压5V为例说一下他的电路。
2019-08-02
负压 电路图
- 强强联手!贸泽电子携手ATI,为自动化产线注入核心部件
- 瞄准精准医疗,Nordic新型芯片让可穿戴医疗设备设计更自由
- 信号切换全能手:Pickering 125系列提供了从直流到射频的完整舌簧继电器解决方案
- 射频供电新突破:Flex发布两款高效DC/DC转换器,专攻微波与通信应用
- 电源架构革新:多通道PMIC并联实现大电流输出的设计秘籍
- AI 芯片监管新路径?解析英伟达 GPU 车队监控软件
- 以 XCORE® 技术为核心,XMOS 亮相 CES 2026
- 有机基板 + 精简引脚,SPHBM4 的双重技术突破
- 减重 35%、减排 80% 艾迈斯欧司朗联合奥德堡推出零成本环保卷盘方案
- 极端环境救星:AMD EPYC 2005 系列处理器解析
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall




