你的位置:首页 > 电路保护 > 正文

第11讲:三菱电机工业SiC芯片技术

发布时间:2024-12-12 责任编辑:lina

【导读】1200V级SiC MOSFET是一种能充分发挥SiC优势的器件,广泛应用于工业、汽车等领域。目前,1200V级SiC MOSFET被多家器件厂商定位为主力产品,本文主要介绍三菱电机1200V级SiC MOSFET的技术开发概要。


1200V级SiC MOSFET是一种能充分发挥SiC优势的器件,广泛应用于工业、汽车等领域。目前,1200V级SiC MOSFET被多家器件厂商定位为主力产品,本文主要介绍三菱电机1200V级SiC MOSFET的技术开发概要。

截至2024年,三菱电机已量产第二代平面栅SiC MOSFET芯片,并配套于各种模块实现产品化。图1显示了第二代平面栅SiC MOSFET的MOS元胞截面结构及其特点。首先,使用n型离子注入技术(JFET掺杂)来优化MOS元胞JFET区的结构,降低了JFET区域的电阻。此外,与以往相比,缩小了MOS元胞的尺寸,通过提高MOS沟道密度来降低电阻,并通过使SiC衬底更薄来降低电阻。通过这些改进,如图2所示,三菱电机的第二代SiC MOSFET与第一代相比,导通电阻降低了30%以上。此外,用于保持第二代SiC MOSFET耐压的终端结构采用了FLR(Field Limiting Ring),形成适当的表面保护膜。


第11讲:三菱电机工业SiC芯片技术

迄今为止,三菱电机的第二代SiC MOSFET已被广泛应用于市场上多个系统中,充分证明其故障率低、性能稳定。目前,以第二代SiC MOSFET结构为基础,进一步进行改良,继续开发便于使用的SiC MOSFET,推进高性能、高可靠性SiC模块的产品化。

作为耐压1200V级SiC MOSFET的下一代产品,三菱电机正在推进第四代沟槽栅SiC MOSFET的开发。另外,三菱电机第三代SiC MOSFET采用SBD嵌入式MOSFET,将在下一章节进行介绍。图3显示了正在开发的沟槽栅SiC MOSFET结构,采用离子注入技术,形成独特的MOS元胞结构。其特点是,在高电场容易集中的沟槽底部,进行p型离子注入(BPW:bottom p-well)来降低电场强度,对沟槽侧壁进行p型和n型离子注入,使BPW的电位保持恒定,确保开关时稳定工作,并降低了电流路径的电阻。因此,三菱电机的沟槽栅SiC MOSFET可实现高可靠性、稳定工作和低导通电阻。图4比较了三菱电机的沟槽栅SiC MOSFET和平面栅SiC MOSFET的导通电阻,可见沟槽栅MOSFET的导通电阻大幅降低。室温下比导通电阻为2mΩ·cm2左右,达到世界先进水平。从图4也可看出,高阈值电压时,沟槽栅SiC MOSFET导通电阻相对平面栅降低的比例更大。这是沟槽栅SiC MOSFET的优点,因为MOS沟道形成在与(0001)面垂直的面上,MOS通道的有效迁移率比较大。三菱电机的沟槽栅MOSFET结构上的特点是离子注入浓度和区域等设计自由度高,因此可以调整各种特性。


第11讲:三菱电机工业SiC芯片技术

第11讲:三菱电机工业SiC芯片技术 第11讲:三菱电机工业SiC芯片技术

三菱电机的第四代沟槽栅SiC MOSFET非常适合要求高阈值电压和低导通电阻的xEV,正计划开发用于xEV的SiC模块作为其首批应用产品。未来,我们将推动沟槽栅SiC MOSFET应用于各种其他用途。

 

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

用4200A和矩阵开关搭建自动智能的可靠性评估平台

ADI电机运动控制解决方案 驱动智能运动新时代

AHTE 2025展位预订正式开启——促进新技术新理念应用,共探多行业柔性解决方案

功率器件热设计基础(七)——热等效模型

学子专区—ADALM2000实验:调谐放大器级—第2部分



特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭