【导读】此专栏将为大家介绍有关静噪对策的基础知识。继上回的片状铁氧体磁珠之后,这次我们将为大家带来片状三端子电容器的介绍。
引线型陶瓷电容器
在介绍片状三端子电容器之前,最好先了解一下引线型三端子电容器。这有助理解片状三端子电容器的内容。

图1为普通的引线型陶瓷电容器(二端子)结构。在单板的电介质两侧涂上电极,再安装上引线端子即构成引线型陶瓷电容器结构。由于其引线端子部分带有微小的电感(残留电感),因此在作为旁路电容使用时,会与地面产生电感。

图2是将电容器作为旁路电容使用时的插入损耗特性示例。在插入损耗图中,越往下干扰越小。由于电容器的阻抗随着频率的增大而增大,因此在 高频范围内,插入损耗也应该如图中虚线所示,逐渐增大。然而,如上所述,由于电容器在实际使用中带有残留电感,因此会产生干扰,降低频率性能,故表现出如 实线所示的V字型插入损耗曲线。[page]
三端子电容器单侧引出2根引线
三端子电容器是为改善二端子电容器的高频特性而对引线端子的 形状进行改进后形成的陶瓷电容器。如图3所示,三端子电容器在单侧引出两根引线端子。将两根引出的引线分别连接至电源和信号线的输入、输出端,将相反一侧 接地,即可形成如右图所示的等效电路图。通过这种连接方式,两根引线侧的引线电感将不进入大地侧,由此可极大地减小接地电感。此外,由于两根引线侧的引线 的电感作用类似T型滤波器的电感,能够起到降低干扰的作用。

目前所使用的电容器多为片状多层陶瓷电容器。图4为二端子片状多层电容器的结构概念 图。其结构表现为,夹着电介质薄片,分别与两侧外部电极连接的内部电极交错层叠。由于其为片状结构,且无引线,因此该部分没有残留电感。然而,由于其内部 还存在微量电感,因此在较高频率下将导致性能下降。



如图5所示,片状三端子电容器虽名为三端,但实为四端结构。这是因为,虽然四端设计可减少接地端电感,但电气特性方面,无论哪个端子都具备相同电位。而引线型三端子电容器原本就为三端结构,因此贴片化后仍被称为"三端"。[page]
片状三端子电容器的安装方法
片状三端子电容器具贯通端子与接地端子,因此与普通的二端子电容器相比,安装方法有所不同。图7为安装示例。
