-

Sub-GHz无线SoC选料,如何选到最适合你的那一颗?
根据球移动通信系统协会(GSMA)的研究数据,2010-2020年全球物联网设备数量的复合增长率高达19%,2020年达到了126亿台;而到2025年,这个数字将攀升至246亿。其他机构的预测数据虽然有差异,但是大抵都在数百亿级的水平,并大都认为在未来十年内这个进程将继续加速,向千亿量级的规模迈进。在这样...
2022-09-29
无线SoC MCU 贸泽电子
-

运放使用时高频增益的制约因素
结电容的存在使得基极电流ib被旁路。从而使得真正流过发射结的基极电流ib′减小。而只有真正流过发射结的基极电流才会被放大。频率越高,结电容的容抗就越小,则结电容的旁路作用就越显著,晶体管的电流放大倍数β就越低,放大器的增益就越低。
2022-09-28
运放 结电容
-

运算放大器偏置电阻的计算
由于各级电路的电路形式以及增益不同,故等效的RC时间常数也不同。输出级为电压跟随器形式。其增益最低,但带宽最宽(即RC低通截止频率最高)。即RC时间常数最小。
2022-09-28
运算放大器 偏置电阻
-

如何利用示波器实现指数时间常数测量
许多物理现象与电容器和电感器这类储能器件的充放电相关,将会产生具有指数上升沿或下降沿的波形,其中指数时间常数揭示了有关基本过程和元件值的信息。能够利用示波器测量指数时间常数,对更好地了解电路工作很有用。但是,示波器没有直接读出指数时间常数的测量参数。
2022-09-28
示波器
-

运放的频率特性等效电路
由于各级电路的电路形式以及增益不同,故等效的RC时间常数也不同。输出级为电压跟随器形式。其增益最低,但带宽最宽(即RC低通截止频率最高)。即RC时间常数最小。
2022-09-28
运放 等效电路
-

多波束相控阵接收机混合波束成型功耗优势的定量分析
本文对模拟、数字和混合波束成型架构的能效比进行了比较,并针对接收相控阵开发了这三种架构的功耗的详细方程模型。该模型清楚说明了各种器件对总功耗的贡献,以及功耗如何随阵列的各种参数而变化。对不同阵列架构的功耗/波束带宽积的比较表明,对于具有大量元件的毫米波相控阵,混合方法具有优势。
2022-09-28
相控阵 接收机 波束成型
-

如何将运算放大器用作差分放大器查找电压值的电压差
运算放大器最初是为模拟数学计算而开发的,从那时起,它们已被证明在许多设计应用中都很有用。正如我的教授所说的那样,运算放大器是算术电压计算器,它们可以使用求和放大器电路执行两个给定电压值的加法,并使用差分放大器执行两个电压值之间的差。除此之外,运算放大器还通常用作反相放大器和同...
2022-09-27
运算放大器 电压差
-

运算放大器的偏置电流及消除偏置电流影响
偏置电流在运放输入端外部电阻后产生电压会对使用者造成麻烦,产生系统误差。比如对于一个同相单位增益缓冲电流,如果信号源电阻为 1MΩ,那么当 时,就会产生 10mV 的误差,对于任何系统这个误差都不能被忽略。
2022-09-27
运算放大器 偏置电流
-

LOTO示波器 实测开环增益频响曲线/电源环路响应稳定性
一般我们用的电源系统/控制系统或者信号处理系统都可以简单理解成负反馈控制系统。最典型的,运放组成的信号放大电路就是这样的系统。本文以最简单的运放信号放大电路为例,演示如何使用LOTO示波器测量控制系统的开环增益频响曲线,以及演示电源的环路响应稳定性测试。
2022-09-26
LOTO示波器 开环增益频响曲线 电源环路
- ROHM新型接近传感器面世:VCSEL技术赋能工业自动化精准感知
- 为智能电动汽车赋能!纳芯微NSR2260x-Q1系列攻克复杂电源挑战
- 射频性能再升级,大联大品佳推出基于达发AB1585AM的头戴式蓝牙耳机方案
- 从零售到医疗:安勤四尺寸触控电脑满足多元自助服务场景
- 覆盖全球导航系统:Abracon新品天线兼容GPS/北斗/Galileo/GLONASS四大星座
- 意法半导体CEO将重磅亮相摩根士丹利TMT大会,释放战略信号
- 采购无忧:贸泽电子备货瑞萨新品,覆盖全系列嵌入式应用
- 创新强基,智造赋能:超600家企业齐聚!第106届中国电子展打造行业盛宴
- 安森美获Aura半导体授权,强化AI数据中心电源生态
- 东芝携150年创新积淀八赴进博,以科技赋能可持续未来
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall





