-
为什么恒流LED老是容易烧掉?告诉你三个实用建议
“我用了最好的LED和恒流驱动,为什么还是会烧掉?”——这是我们客户在实际设计中遇到的问题。这种情况下,你需要检查散热器或冷却系统是否工作正常、布线是否正确并确保系统在额定参数范围内运行。
2019-09-05
恒流LED
-
如何做好开关电源设计最重要的一步?(一)
所有开关电源设计的非常重要的一步就是印制电路板(PCB)的线路设计。如果这部分设计不当,PCB也使电源工作不稳定,发射出过量的电磁干扰(EMI)。设计师的工作就是在理解电路工作过程的基础上,保证PCB设计合理。
2019-09-04
开关电源 设计 重要步骤
-
告别效率损耗源,这款器件随时为大电流LED供电
高功率LED在现代照明系统中的应用数量不断激增,涵盖汽车前照灯、工业/商业标识、建筑照明以及各种消费电子等应用。行业之所以转向LED技术,是因为固态照明与传统光源相比具有明显的优势:电能转换为光输出不仅效率高,而且使用寿命长。
2019-09-04
效率损耗 大电流 LED供电
-
干货:电路设计的全过程(含原理图)
开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。
2019-09-03
电路设计 原理
-
一文带你认识全类型“电阻”!
电阻(Resistance,通常用“R”表示),是一个物理量,在物理学中表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。而超导体则没有电阻。
2019-09-02
电阻 分类 原理
-
如何提高晶体管的开关速度
晶体管的开关速度即由其开关时间来表征,开关时间越短,开关速度就越快。BJT的开关过程包含有开启和关断两个过程,相应地就有开启时间ton和关断时间toff,晶体管的总开关时间就是ton与toff之和。
2019-09-02
晶体管 开关速度
-
开关电源为啥有时候会叫?如何消除?
稳压电源电路输出的开关电流的频率,或周期性脉冲群的周期频率,或毛刺的周期频率落入20~20kHz的音频范围,且周期性变化的电流经过电感线圈而产生交变磁场,使得该电感线圈在交变磁场作用下像“喇叭”一样在几乎固定的频率上产生机械振动而发出啸叫。
2019-09-02
开关电源 啸叫
-
以实例分析FPGA电源设计的特性及规范约束
作为一种复杂的集成电路,FPGA系统供电的电源的设计与一般的电子系统相比,要求也更高,需要具备高精度、高密度、可控性、高效及小型化等的特点。本文系统介绍了FPGA电源的不同特性,同时会通过实例,让工程师更深入地了解各特性的意义,以及FPGA规范约束及其对电源设计的影响,以便快速完成FPGA系...
2019-08-30
FPGA 电源设计
-
关于“陶瓷电容”的秘密!
1900年意大利L.隆巴迪发明陶瓷介质电容器。30年代末人们发现在陶瓷中添加钛酸盐可使介电常数成倍增长,因而制造出较便宜的瓷介质电容器。
2019-08-29
陶瓷电容 分类
- 安森美与舍弗勒强强联手,EliteSiC技术驱动新一代PHEV平台
- 安森美与英伟达强强联手,800V直流方案赋能AI数据中心能效升级
- 贸泽电子自动化资源中心上线:工程师必备技术宝库
- 隔离变压器全球竞争图谱:从安全隔离到能源革命的智能屏障
- 芯海科技卢国建:用“芯片+AI+数据”重新定义健康管理
- Wi-Fi 8来了:放下“速度执念”,要给你“稳如有线”的网络体验
- 千家万户沐光背后的“电流守护者”:AN3V传感器如何为分布式光伏撑起安全伞?
- 卡车运输的“轮胎医生”:迈来芯智能TMS如何守护供应链生命线?
- 3G/4G车载监控录像机:智慧交通的“隐形守护者”,为何至今仍未被取代?
- DDR vs LPDDR:两种内存的“天生使命”,为何永远无法互相替代?
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall