-

多路输出电源,能量分配与输出精度!
反激电源多路输出交叉调整率的产生原因和改进方法,理论上反激电源比正激电源更使用于多路输出,但实际上反击电源的多路输出交叉调整率比正激电源更难做,理解交叉调整率非常重要的一点是,传递到副边的电流是如何被副边的多路输出所分配的。
2018-07-19
多路输出电源 能量分配与输出精度!
-

一招教你如何制作一个全兼容快充适配器
目前快充市场可谓“百花齐放”,各种快充协议让人眼花缭乱。高通QC2.0/3.0、MTKPE 1.0/2.0和USB PD高压快充占据市场大壁江山;华为Super Charger、OPPO VOOC、努比亚NeoCharger、高通QC 4.0以及MTK PE3.0低压直充也发展迅速;魅族、小米、OPPO以及锤子等手机品牌也正在研究更大功率的电荷泵高压直充...
2018-07-19
快充 适配器 EDP3032
-

七招教你轻松改善电感线圈Q值
Q值是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。
2018-07-19
电感线圈 Q值 分布电容
-

教你如何选择开关电源串模扼流圈、共模扼流圈
也许你知道开关电源,也了解开关电源串模扼流圈、共模扼流圈,但不一定知道如何选择开关电源中串模扼流圈、共模扼流圈?那么,本文就是教你如何去选择的。
2018-07-18
开关电源 串模扼流圈 共模扼流圈
-

堪称工业中的“CPU”:IGBT,中外差距有多大
IGBT(绝缘栅双极型晶体管),是由 BJT(双极结型晶体三极管) 和 MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。IGBT融合了BJT和MOSFET的两种器件的优点,如驱...
2018-07-18
IGBT 芯片 开关
-

如何在电压控制电路中使用FET(第一部分)
LIS公司生产各种FET(场效应晶体管),特别值得一提的是他们有各种匹配双器件产品,这种匹配器件封装有其独特优势。例如,如果您在设计一个双声道立体声音频产品,那么在同一个封装中包含两个或四个器件就可以使两个音频通道匹配更加紧密。
2018-07-17
技术实例 模拟设计 FET 压控电阻
-

关于直接反电动势法的无刷直流电机准确换相新方法
分析了上桥臂PWM 调制、下桥臂恒通调制方式时的端电压波形,讨论相应的反电动势过零点检测方法。在PWM 调制信号开通状态结束时刻对端电压进行采样,由软件算法确定反电动势过零点. 针对电机运行时存在超前换相或滞后换相的情况,通过设置合理的延迟时间来实现最佳换相。
2018-07-16
反电动势法 无刷直流电机 电机控制
-

【防偏磁】半桥隔直电容计算方法!
工程师都知道实际的开关电源半桥拓扑都有一个隔直电容,其实在原理拓扑中是没有这个电容的。这个电容的存在一定是有它的道理的,该如何理解,又该如何计算它的容量?
2018-07-13
防偏磁 半桥隔直电容 计算方法
-

【两公式搞定】实际带你计算一个电流互感器!
电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。
2018-07-13
电流互感器 开关电源 损耗
- 强强联手!贸泽电子携手ATI,为自动化产线注入核心部件
- 瞄准精准医疗,Nordic新型芯片让可穿戴医疗设备设计更自由
- 信号切换全能手:Pickering 125系列提供了从直流到射频的完整舌簧继电器解决方案
- 射频供电新突破:Flex发布两款高效DC/DC转换器,专攻微波与通信应用
- 电源架构革新:多通道PMIC并联实现大电流输出的设计秘籍
- 反相电源转换器:原理、方案与应用
- 意法半导体与SpaceX:十年协作铸就卫星通信新高度
- 67 TOPS 算力加持!研华 AIR-020R 边缘 AI 系统重磅来袭
- 简单制胜——第四部分:高效BMS主动均衡算法深度解密
- 简单制胜——第三部分:高效BMS主动均衡系统架构深度剖析
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall



