-
用差分电路原理来分析输出电压为何要偏移
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。
2021-02-09
差分电路 输出电压 电压偏移
-
常用ADC的内部原理,你了解吗?
用了这么久ADC,从没细看过ADC的内部原理和如何获得最佳精度,之前看到一篇ST的官方文档讲的不错,这里整理分享给大家。
2021-02-08
ADC
-
单片机电源设计中稳压电路的有什么作用?
大多数操作都是如此,将电脑上的USB接口接到开发板上,用它来给板子供电。然而,在实际的项目操作中呢,我们总不能给每个板子配一台电脑吧!
2021-02-07
单片机电源设计 稳压电路
-
如何解决电源正负极接反烧板?
硬件工程师的很多项目是在洞洞板上完成的,但有存在不小心将电源正负极接反的现象,导致很多电子元器件都烧毁,甚至整块板子都废掉,还得再焊接一块,不知道有什么好的办法可以解决?
2021-02-07
电源正负极 防反接保护电路
-
简单振荡器电路所需的波形是如何生成的?
波形生成是模拟电路的重要组成部分,是电路设计和测试的一部分。本文介绍在电路设计时使用一些简单的振荡器电路生成所需波形的方法。
2021-02-07
振荡器电路 波形
-
运放电路:同相放大,还是反相放大?
电子电路中的运算放大器,有同相输入端和反相输入端,输入端的极性和输出端是同一极性的就是同相放大器,而输入端的极性和输出端相反极性的则称为反相放大器。
2021-02-07
运放电路 同相 反相
-
开关IC控制器的去耦旁路设计
旁路和去耦是指防止有用能量从一个电路传到另一个电路中,并改变噪声能量的传输路径,从而提高电源分配网络的品质。它有三个基本概念:电源、地平面,元件和内层的电源连接。
2021-02-05
开关IC控制器 去耦旁路
-
如何减少SiC MOSFET的EMI和开关损耗?
碳化硅(SiC)MOSFET的快速开关速度,高额定电压和低RDSon使其对于不断寻求在提高效率和功率密度的同时保持系统简单性的电源设计人员具有很高的吸引力。
2021-02-02
SiC MOSFET EMI 开关损耗
-
汽车USB 2.0和5 V Type-C解决方案提供充电和稳健的数据线保护
USB充电端口已成为现代车辆信息娱乐系统的重要组成部分。乘客越来越习惯于通过车辆的电气系统来为智能手机(或其他便携式设备)充电,并反过来利用这些设备来丰富车辆信息和娱乐功能。为了同时支持电源和数据能力,并且适应不断快速变化的便携式设备市场,USB充电端口必须满足与电源、数据传输和鲁...
2021-02-02
汽车 USB 2.0 Type-C 解决方案 数据线保护
- 从失效案例逆推:独石电容寿命计算与选型避坑指南
- 性能与成本的平衡:独石电容原厂品牌深度对比
- 精密信号链技术解析:从原理到高精度系统设计
- 仪表放大器如何成为精密测量的幕后英雄?
- 仪表放大器如何驱动物联网终端智能感知?
- 连偶科技携“中国IP+AIGC+空间计算”三大黑科技首秀西部电博会!
- 优化仪表放大器的设计提升复杂电磁环境中的抗干扰能力
- 战略布局再进一步:意法半导体2025股东大会关键决议全票通过
- μV级精度保卫战:信号链电源噪声抑制架构全解,拒绝LSB丢失!
- 破解工业电池充电器难题:升压or图腾柱?SiC PFC拓扑选择策略
- 抢占大湾区C位!KAIFA GALA 2025AIoT方案征集收官在即,与头部企业同台竞逐
- 从单管到并联:SiC MOSFET功率扩展实战指南
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall