-

夏日炎炎,电路散热技巧你都Get到没有?
出于可靠性原因,处理大功率的集成电路越来越需要达到热管理要求。所有半导体都针对结温(TJ)规定了安全上限,通常为150°C(有时为175°C)。与最大电源电压一样,最大结温是一种最差情况限制,不得超过此值。在保守设计中,一般留有充分的安全裕量。请注意,这一点至关重要,因为半导体的寿命与工作结...
2019-06-18
电路散热 技巧
-

高速差分过孔之间的串扰分析
在硬件系统设计中,通常我们关注的串扰主要发生在连接器、芯片封装和间距比较近的平行走线之间。但在某些设计中,高速差分过孔之间也会产生较大的串扰,本文对高速差分过孔之间的产生串扰的情况提供了实例仿真分析和解决方法。
2019-06-18
高速差分过孔 串扰分析
-
为什么CAN总线支线长度不能太长?
CAN总线网络在应用时,工程师常常会建议总线支线不要太长,那么为什么CAN总线支线不能太长,如果某些环境下必须使用长支线又该怎么办呢?
2019-06-17
CAN 总线支线
-

化被动为主动,精确又稳健的电池管理系统是这样滴
通过被动和主动电池均衡,电池组中的每个单元都得以被有效监控并保持健康的荷电状态(SoC)。这样不仅可以增加电池循环工作次数,还能够提供额外的保护,防止电池单元由于过度充电/深度放电而产生损坏。
2019-06-17
电池管理系统 LTC3300 双向反激式控制器
-

开关电源稳定性的设计与测试!
众所周知,任何闭环系统在增益为单位增益1,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。
2019-06-17
开关电源 稳定性 设计 测试
-

电容充放电原理
电容是一种以电场形式储存能量的无源器件。在有需要的时候,电容能够把储存的能量释出至电路。电容由两块导电的平行板构成,在板之间填充上绝缘物质或介电物质。图1和图2分别是电容的基本结构和符号。
2019-06-17
电容 充放电 原理
-

MOS管寄生参数的影响和其驱动电路要点
我们在应用MOS管和设计MOS管驱动的时候,有很多寄生参数,其中最影响MOS管开关性能的是源边感抗。寄生的源边感抗主要有两种来源,第一个就是晶圆DIE和封装之间的Bonding线的感抗,另外一个就是源边引脚到地的PCB走线的感抗(地是作为驱动电路的旁路电容和电源网络滤波网的返回路径)。在某些情况下...
2019-06-17
MOS管 寄生参数 驱动电路
-

阻抗匹配的基本原理及设计方法
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,几乎不会有信号反射回来源点,从而提升能源效益。
2019-06-12
阻抗匹配 基本原理 设计方法
-

不只是一台示波器!电源分析插件你真的会用了吗?
开关电源的质量直接影响到产品的技术性能以及其安全性和可靠性。电源测试项目多,计算量大,统计繁琐等问题一直困扰着工程师们,为了解决这些问题,今天就带您走进开关电源测试的新世界。
2019-06-12
示波器 电源分析插件
- 强强联手!贸泽电子携手ATI,为自动化产线注入核心部件
- 瞄准精准医疗,Nordic新型芯片让可穿戴医疗设备设计更自由
- 信号切换全能手:Pickering 125系列提供了从直流到射频的完整舌簧继电器解决方案
- 射频供电新突破:Flex发布两款高效DC/DC转换器,专攻微波与通信应用
- 电源架构革新:多通道PMIC并联实现大电流输出的设计秘籍
- 二十载深耕,今朝加冕:大联大获物联网大会公认“杰出电子分销商”殊荣
- 专为车载以太网开发打造!克萨(Kvaser)推出Arcus 100/1000BASE-T1以太网转换器,合规易用赋能车辆全测试场景
- NAND Flash位翻转是什么?一文读懂其原理与应对
- 反相电源转换器:原理、方案与应用
- 意法半导体与SpaceX:十年协作铸就卫星通信新高度
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall



