你的位置:首页 > 电源管理 > 正文

高效率性能系统的“绿色通道”:低输入电压DC-DC架构

发布时间:2014-12-20 责任编辑:echolady

【导读】工业需求的提高促使业界对性能的提高以及功耗的降低显的尤为迫切。但是不难发现的是,降压型的解决方案仍然存在诸多挑战。本文将为您详解适用于高效率性能系统的低输入电压DC-DC架构。

在许多场合中,此类系统内部的大多数组件所需的最大输入电压如今仅为3.3V。在这种情况下,可以对传统的5V或12V中间电压轨进行旁路,并将24VDC或48VDC背板分配电压直接转换为一个 3.3V的两用总线和电源轨。很多高功率DC/DC砖式模块供应商 (例如:Emerson 和 TDK-Lambda 公司) 已经认识到这一发展趋势,他们通过大幅提升其在高降压比操作中的性能轻松地实现了92%的效率指标。利用该3.3V中间总线,后续的负载点稳压器可产生更低的电压 (即:2.5V、1.2V、1.0V 等),以用于给电源存储器、ASIC/FPGA内核及高速I/O等等供电。从中间总线进行直接转换可提供另一项优势,就是可以减少印刷电路板(PCB)中用于完成电源轨至负载布线所需的铜箔层数。

以一块具有一个仅用作中间总线的5V电压轨的PCB为例,它包含两个用于支持3.3V和1.8V电压轨的DC/DC转换器。采用一根3.3V中间总线和单个3.3V至1.2V转换器重新设计的相同电路板将很有可能具有较少的铜箔层(3个电压轨现减为 2个)。在电路板上最终形成的总体解决方案其尺寸是极具吸引力的,同时免除了将5V电位传送至PCB的某个完整部分的需要。在PCB的制造过程中尽可能减少铜箔层数的选项具有降低成本与节省材料的潜力,并有望改善良率及可靠性。

我们不难发现采用传统的降压型解决方案有着诸多的问题,由于开关稳压器或开关控制器需要一个大约5V的最小输入电压或偏置电压,用于驱动N沟道功率MOSFET。在电流传导期间,需要利用该最小电压将功率MOSFET驱动至低导通电阻区域。对于改善工作效率 (特别是在网络及存储系统中经常遇到的大电流条件下) 的努力而言,导通电阻的任何增加都是不利的。对那些通过将中间轨电压降至最低的组件输入电源电压 (比如3.3V) 以设法提高工作效率和降低生产成本的系统来说,所面临的挑战是如何最好地支持电流消耗通常仅为50mA~100mA的偏置电源 —— 增设一个5V输出高电压降压型稳压器;增设一个升压型转换器 (从3.3V);或者继续使用现有的5V中间总线。在组件数目、设计工作量、PCB复杂性、可靠性、成本及工作效率方面,上述的选择方案均需要采取一些令人不快的折衷措施。

如果有一种更好的替代解决方案,那就能够提升相应的效率和性能,这里我们提出一种可以使用的解决方案。这就是LTM4611降压型μModule稳压器。该器件隶属于一个新的DC/DC转换器系列,是从传统型开关电源管理解决方案发展而来,几乎将开关转换器的所有组件 (包括电感器) 都集成到了一个紧凑的表面贴装型封装之中。LTM4611电源模块采用1.5V至5.5V的单工作输入电压轨,并将其降压为一个低至0.8V的输出电压,且可提供高达15A的输出电流。完全内置于一个LGA封装之内的自生成偏置电源可支持从单个低电压电源来运作。从效率的观点来证明传统三级降压架构的合理性是非常棘手的,因为分配电压轨与负载之间的每个降压级的效率都必须远远高于两级解决方案。

对于越来越多的产品而言,相比于降低重负载时的功率损耗,减少轻负载时的功率损耗具有同等的重要性 —— 假如不说更重要的话。子系统被设计成尽可能长地工作于较低功耗的待机或睡眠状态 (旨在节能),并只在需要时候吸取峰值功率 (满负载)。LTM4611支持脉冲跳跃模式和突发模式(Burst Mode)操作,与连续导通模式相比,其在低于3A负载电流条件下的效率水平有了大幅度的提升。
[page]
它的出处优势为可以为多个电源的均流以提供60A或更大的输出电流,这对于需要提供高达60A输出的电源轨,可支持多达4个LTM4611 μModule稳压器的均流。电流模式控制使得模块的均流特别可靠且易于实现,同时在启动、瞬变及稳态操作情况下甚至可以确保模块之间的均流。相比之下,许多电压模式模块则是通过采用主-从配置或“压降均分 (droop-sharing)”(也被称为“负载线路均分”) 来实现均流。在启动和瞬态负载条件下,主-从模式容易遭受过流跳变,而压降均分则会导致负载调节指标下降,且在瞬态负载阶跃期间几乎无法保证优良的模块至模块电流匹配。LTM4611通常可在无负载至满负载范围内提供优于0.2%的负载调节——在-40℃至125℃的整个内部模块温度范围内则可达0.5% (最大值)。

然后他可以使负载上的稳压更加准确,因为高电流低电压FPGA、ASIC、微处理器 (μP) 等常常需要在封装端子(例如:VDD 和 DGND 引脚)上提供经过精确调节的极其准确的电压 —— 标称VOUT的±3%(或更好)。在如此高的电流水平和低电压电平下,PCB 走线中的阻性分配损耗有可能对负载上的电压产生影响。为了满足针对低输出电压的这一严格的稳压要求,LTM4611 提供了一个单位增益差分放大器,用于在电压低于或等于3.7V的情况下在负载端子上进行远端采样。该器件的LGA封装允许从顶部和底部散失热量,因而便于使用金属底盘或BGA散热器。不管有没有冷却气流,这种封装的外形均有利于实现卓越的热耗散。如前文所述,在1.8V的低输入电压条件下,为了以足够的幅度驱动栅极以使功率MOSFET完全饱和,不具备偏置电源的传统型电源IC解决方案将会十分吃力。因此,其热性能将低于LTM4611所能提供的水平,这是由于后者具有内部微功率偏置发生器。

当然它的另一种优势肯定少不了具有小巧面积的这点,这使得我们在进行电路设计的时候缩减了占板面积。LTM4611内置于一种耐热性能增强型LGA(焊盘网格阵列) 封装,具有小巧的焊盘图形 (仅15mmx15mm)和实际体积(高度仅为4.32mm——占用的空间只有区区1cm3),可提供引人注目的效率。除了高效率之外,在给定的输入电压条件下,LTM4611的功耗曲线相对平坦,从而使LTM4611的热设计以及在后续产品中的重复使用变得简单易行 —— 即使在中间总线电压由于IC芯片不断缩小而日益下降的情况之下也不例外。凌力尔特公司的μModule稳压器 (比如:LTM4611) 按照与产品序列中的其他封装集成电路一样严格的标准进行测试。在向公众发布之前,产品必须顺利地通过一系列的测试,例如:依据JEDEC规范进行的工作寿命测试、+85℃/85% 温度-湿度偏置、温度循环、机械冲击、振动等等。这种原则使工程师们拥有了十足的信心:这些高集成度解决方案完全能够提供堪与传统开关转换器相媲美的可靠性,而后者却需要具有众多相关联的外部组件,必须由采购、制造和质量部门进行购置、装配和检验。

可以说我们不难发现越来越多的超级电容被用作短时供电电源,以对电池后备系统提供补充。 由于超级电容器的最大充电电压仅为2.3V至2.7V,因此,使用高效率的低输入电压降压型转换器能够最大限度地增加系统准备时间,以在主电源重新接通之后实现快速系统恢复。DC/DC砖型模块供应商正在推出能够以很高的效率直接将分配电压轨(24V 或48V)降压至一个低于5V的输出电压之新型器件。完全为了有效运行传统开关转换器而产生一个5V偏置电压轨的做法会增加不希望的成本、功耗、复杂性或组件。LTM4611内置于单个LGA封装 (许多其他的集成电路都采用这种封装) 之中,其在整个输入电压范围内保持了高效率和上佳的热性能。LTM4611是一款简洁和高度可靠的降压型稳压器,可轻松适应那些需要从低至1.5V的输入电压提供高输出电流的负载点应用,并降低了采用 “额外”电压轨的必要性。

相关阅读:

提升DC-DC降压转换器的性能,电容电感是关键!
同步还是非同步,DC-DC电路该作何选择?
DC-DC直通车:DC-DC电源波纹的测量方法及仪器要求

要采购转换器么,点这里了解一下价格!
特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭