-
罗姆SiC MOSFET的新产品为何采用4引脚封装
ROHM最近推出了SiC MOSFET的新系列产品“SCT3xxx xR系列”。SCT3xxx xR系列采用最新的沟槽栅极结构,进一步降低了导通电阻;同时通过采用单独设置栅极驱动器用源极引脚的4引脚封装,改善了开关特性,使开关损耗可以降低35%左右。此次,针对SiC MOSFET采用4引脚封装的原因及其效果等议题,我们采访了RO...
2020-05-14
罗姆 SiC MOSFET 4引脚封装
-
智能家居中电池特性分析及设计方案
现在,智能楼宇自动化中加入了越来越多的智能传感器,比如智能猫眼,门铃,便携式摄像头以及烟感等。这些产品通常采用电池供电,如常见的18650锂电池,AA 干电池。那么在电池供电的产品中,如何设计合理的供电方案是延长电池使用时间是重点问题。
2020-05-13
智能家居 电池特性 设计方案
-
如何应对FPGA或SoC电源应用面临的小尺寸、低成本挑战?
工业电子产品的发展趋势是更小的电路板尺寸、更时尚的外形和更具成本效益。由于这些趋势,电子系统设计人员必须降低印刷电路板(PCB)的尺寸和成本。使用现场可编程门阵列(FPGA)和片上系统(SoC)的工业系统需要多个电源轨,同时面临小尺寸和低成本的挑战。
2020-05-12
FPGA SoC电源 柔性功率器件
-
如何通俗易懂的理解电源中的开关AC-DC转换
首先,简单说明一下开关方式的AC/DC转换。请参照右侧的基本电路,以及位于下方的波形。在这里,以日本国内为例,输入电压设定为100VAC。此100VAC最初用桥式二极管加以整流。此为全波整流。
2020-05-12
电源 开关 AC-DC转换
-
PCB布局技巧: 带条纹的电容
这些都是无极性电容,所以这个条纹不是极性标记。一位读者得回答正确,它代表电容卷绕时,卷绕在外层的那一极。我发现现在很少有工程师知道电容一端的条纹代表什么,也不知道条纹端和不带条纹端互换带来的不同效果。即使你从来不使用这类电容,了解这些内容也会让你设计的PCB有所不同。这次让我们讨...
2020-05-12
PCB 布局技巧 电容
-
可否利用DAC来改变交流信号的幅值?
使用电位器可以很方便在信号源的驱动下形成一个幅值可以调节的交流信号源。这比起使用通常的可编程直流电源,或者DAC输出电压来说,输出的是幅度可以变的交流信号源,可以用于很多的自动测量环节。
2020-05-12
DAC 交流信号 幅值 电位器
-
使用POWERPRO降低动态功耗简介
一直以来,设计人员都将最小化功耗的工作留给实现/物理工具来完成。但到了这个时候,有关设计的所有重要架构和微架构决策都已确定。物理工具对功耗的影响非常有限。这些工具无法对设计架构进行彻底的更改,从而实现节能。物理工具所用的方法,例如单元尺寸调整、管脚交换和 Vth 选择,只能将稍稍降...
2020-05-12
POWERPRO 动态功耗
-
致工程师系列之三:高效GaN电源设计八部曲,泰克系列视频课堂实操秘籍
由于可以在较高频率、电压和温度下工作且功率损耗较低,宽禁带半导体(SiC 和 GaN)现在配合传统硅一同用于汽车和 RF 通信等严苛应用中。随着效率的提高,对Si、SiC和GaN器件进行安全、精确的测试,让功率半导体设备更快上市并尽量减少设备现场出现的故障。
2020-05-11
GaN电源设计 泰克
-
开关转换器动态分析采用快速分析技术(3)
对于二阶系数,我们将设置电容C2处于其高频状态(以短路代替它),同时我们将确定驱动电感L1的阻抗。图17说明了这种方法。因为输出因C2短路,节点a和c都处于相同的0V电势。电路简化为右侧示意图。
2020-05-11
开关转换器 动态分析 技术
- 安森美与舍弗勒强强联手,EliteSiC技术驱动新一代PHEV平台
- 安森美与英伟达强强联手,800V直流方案赋能AI数据中心能效升级
- 贸泽电子自动化资源中心上线:工程师必备技术宝库
- 隔离变压器全球竞争图谱:从安全隔离到能源革命的智能屏障
- 芯海科技卢国建:用“芯片+AI+数据”重新定义健康管理
- MBSE智控革命:汽车中控锁安全开发的新范式
- 光伏运维数智化跃迁:AIoT如何重构电站"神经中枢"
- 算力革命:英飞凌PSOC C3重构空调外机控制新范式
- 高频PCB电源革命:三阶去耦策略破解Gbps时代供电困局
- 双芯智控革命:IGBT与单片机如何重塑智能微波炉
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall