-

SiC功率器件使用过程中的常见问题集(上)
由于SiC 材料具有更高的击穿场强、更好的热稳定性、更高的电子饱和速度及禁带宽度,因此能够大大提高功率器件的性能表现。相较于传统的Si功率器件,SiC 器件具有更快的开关速度,更好的温度特性使得系统损耗大幅降低,效率提升,体积减小,从而实现变换器的高效高功率密度化。当前碳化硅功率器件主...
2022-02-09
SiC功率器件 派恩杰
-

基本半导体第三代碳化硅肖特基二极管性能详解
追求更低损耗、更高可靠性、更高性价比是碳化硅功率器件行业的共同目标。为不断提升产品核心竞争力,基本半导体成功研发第三代碳化硅肖特基二极管,这是基本半导体系列标准封装碳化硅肖特基二极管家族中的新成员。相较于前两代二极管,基本半导体第三代碳化硅肖特基二极管在沿用6英寸晶圆工艺基础上...
2022-02-08
基本半导体 碳化硅肖特基二极管
-

开关电源设计中的频率选择(下)
本文是深入研究开关频率设计的系列文章之下篇。上篇回顾了如何计算开关频率的关键指标,以及更高频率设计的难点所在。本文将把这些开关频率的概念应用到实际场景当中。
2022-02-07
开关电源 设计 频率
-

识别并消除次谐波振荡
DC/DC的不稳定是由多种因素造成的,例如补偿参数不当或布局不足。本文将主要讨论次谐波振荡,这是一种当电流模式开关稳压器具有连续电感电流且占空比超过 50% 时可能产生的不稳定形式,而这种振荡会导致不稳定的电源。
2022-02-07
消除 次谐波振荡 开关稳压器
-

如何控制原边振铃
反激电源是最常用的拓扑之一。其变压器漏感常会引起原边振铃,并导致会损坏 MOSFET 的电压尖峰。因此,通过变压器和MOSFET 组件的合理设计来控制振铃非常重要。针对如何降低漏感,MPS 引入了一种 RCD 钳位电路设计策略,下面我们将对此进行详细地描述。
2022-02-07
控制 原边 振铃
-

开关电源设计中的频率选择(上)
频率是开关电源的一个基本属性,它代表了直流电压开启和关断的速率。了解开关频率就可以了解实际应用中电源线路的工作原理。本文是开关频率设计相关系列文章中的上篇。
2022-02-07
开关电源 设计 频率
-

安森美连续第六年获EcoVadis 2022可持续发展评级的白金奖
2022年3月3日—领先于智能电源和智能感知技术的安森美(onsemi,美国纳斯达克股票代号:ON),宣布获2022年EcoVadis可持续发展评级最高级别的白金奖。公司自2017年以来一直保持这优秀成绩,在可持续发展取得的成就备获认可。
2022-02-01
安森美 EcoVadis 2022 可持续发展
-

瑞萨电子汽车级半导体被Honda用于其ADAS系统
全球半导体解决方案供应商瑞萨电子集团(TSE:6723)今日宣布,扩大与Honda在高级驾驶辅助系统(ADAS)领域的合作。
2022-02-01
瑞萨电子 汽车级半导体 ADAS系统
-

用于信号和数据处理电路的低噪声、高电流、紧凑型DC-DC转换器解决方案
现场可编程门阵列(FPGA)、片上系统(SoC)和微处理器等数据处理IC不断扩大在电信、网络、工业、汽车、航空电子和国防系统领域的应用。这些系统的一个共同点是处理能力不断提高,导致原始功率需求相应增加。设计人员很清楚高功率处理器的热管理问题,但可能不会考虑电源的热管理问题。与晶体管封装处理...
2022-01-30
数据处理 DC-DC转换器 解决方案
- 强强联手!贸泽电子携手ATI,为自动化产线注入核心部件
- 瞄准精准医疗,Nordic新型芯片让可穿戴医疗设备设计更自由
- 信号切换全能手:Pickering 125系列提供了从直流到射频的完整舌簧继电器解决方案
- 射频供电新突破:Flex发布两款高效DC/DC转换器,专攻微波与通信应用
- 电源架构革新:多通道PMIC并联实现大电流输出的设计秘籍
- 二十载深耕,今朝加冕:大联大获物联网大会公认“杰出电子分销商”殊荣
- 专为车载以太网开发打造!克萨(Kvaser)推出Arcus 100/1000BASE-T1以太网转换器,合规易用赋能车辆全测试场景
- NAND Flash位翻转是什么?一文读懂其原理与应对
- 反相电源转换器:原理、方案与应用
- 意法半导体与SpaceX:十年协作铸就卫星通信新高度
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall




