你的位置:首页 > 互连技术 > 正文

通过利用电化学诊断技术分析传感器的健康状况

发布时间:2022-12-05 责任编辑:lina

【导读】电动汽车充电系统正在不断发展。目前通常使用 400V 电池充电总线电压的 AC Level 2 壁挂式充电盒正在向需要 800V 总线电压的直流快速充电 (DCFC) 系统迁移。像碳化硅这样的宽带隙功率器件非常适合这些应用,与硅 IGBT 相比具有更低的传导和开关损耗。然而,SiC 更快的开关速率以及更高的电压会对栅极驱动器电路提出一些独特的要求。在本文中,我们将重点介绍 Murata 产品经理 Ann-Marie Bayliss 在近的 electronica 2022电源论坛上关于该公司用于此类栅极驱动应用的隔离式 DC/DC 转换器的演讲的某些方面。


传感器劣化和诊断


虽然信号链集成是向前迈出的重要一步,但它本身并不能解决电化学气体传感器的根本缺点——在其使用寿命内性能下降。可以理解的是,这是传感器工作原理和结构的结果。工作条件也会导致性能损失并加速传感器老化。传感器精度会降低,直到它变得不可靠并且不再适合完成其任务。在这种情况下,通常的做法是使仪器脱机并手动检查传感器,这既耗时又昂贵。根据其状况,传感器可以重新校准并再次使用,或者可能需要更换。这会产生相当大的维护成本。通过利用电化学诊断技术,可以分析传感器的健康状况并有效地补偿性能变化。


通过利用电化学诊断技术分析传感器的健康状况

图1.典型的电化学气体传感器信号链(简化)。


通过利用电化学诊断技术分析传感器的健康状况

图2.双通道集成气体传感信号链(简化)。


通过利用电化学诊断技术分析传感器的健康状况

图3.在低相对湿度下加速寿命测试期间传感器灵敏度(左图)和阻抗(右图)之间的相关性。


导致性能下降的常见因素包括温度、湿度和气体浓度过高或电极中毒。短时间暴露在升高的温度(超过 50°C)下通常是可以接受的。但是,在高温下反复对传感器施加压力会导致电解质蒸发并对传感器造成不可逆转的损坏,例如导致基线读数偏移或响应时间变慢。另一方面,极低的温度(低于–30°C)会显著降低传感器的灵敏度和响应能力。


到目前为止,湿度对传感器寿命的影响最大。电化学气体传感器的理想工作条件是20°C和60%相对湿度。环境湿度低于60%会导致传感器内部的电解液变干,从而影响响应时间。另一方面,湿度高于60%会导致空气中的水被吸收到传感器中,稀释电解液并影响传感器的特性。此外,吸水会导致传感器泄漏,可能导致引脚腐蚀。


上述劣化机制会影响传感器,即使它们的大小不是极端的。换句话说,例如,电解质耗尽是自然发生的,并导致传感器老化。无论工作条件如何,老化过程都会限制传感器的使用寿命,尽管某些 EC Sense 气体传感器的使用寿命可能超过 10 年。


可以使用电化学阻抗谱(EIS)或计时安培法(在观察传感器输出的同时脉冲偏置电压)等技术分析传感器。


EIS是一种频域分析测量,通过用正弦信号(通常是电压)激励电化学系统来进行。在每个频率下,记录流过电化学电池的电流并用于计算电池的阻抗。然后,数据通常以奈奎斯特图和波特图的形式呈现。奈奎斯特图显示了复阻抗数据,其中每个频率点由 x 轴上的实部和 y 轴上的虚部绘制。这种数据表示的主要缺点是丢失频率信息。波特图显示了阻抗幅度和相位角与频率的关系。


实验测量表明,传感器灵敏度下降与EIS测试结果的变化之间存在很强的相关性。图3中的示例显示了加速寿命测试的结果,其中电化学气体传感器在低湿度(10% RH)和升高的温度(40°C)下承受应力。在整个实验过程中,传感器定期从环境室中取出并静置一小时。然后使用已知目标气体浓度进行基线灵敏度测试和EIS测试。测试结果清楚地证明了传感器灵敏度和阻抗之间的相关性。这种测量的缺点可能是它的长度,因为在低、低于Hz的频率下获得测量非常耗时。


计时电流法(脉冲测试)是另一种有助于传感器健康分析的技术。测量是通过施加叠加在传感器偏置电压上的电压脉冲来完成的,同时观察通过电化学电池的电流。脉冲幅度通常非常低(例如,1 mV)和短(例如,200 ms),因此传感器本身不会受到干扰。这使得测试可以非常频繁地进行,同时保持气体传感仪器的正常运行。在执行更耗时的EIS测量之前,计时安培法可用于检查传感器是否物理插入设备,也可以作为传感器性能变化的指示。传感器对电压脉冲的响应示例如图4所示。


通过利用电化学诊断技术分析传感器的健康状况

图4.计时安培测试的示例结果。


以前的传感器询问技术已经在电化学中使用了几十年。然而,这些测量所需的设备通常既昂贵又笨重。从实际和财务角度来看,使用这种设备根本不可能测试现场部署的大量气体传感器。为了实现远程内置传感器健康分析,诊断功能必须直接集成为信号链的一部分。


通过集成诊断,可以自主测试气体传感器,而无需人工交互。如果气体传感器在生产中进行了表征,则可以将从传感器获得的数据与这些表征数据集进行比较,并深入了解传感器的当前状况。然后,将使用智能算法来补偿传感器灵敏度的损失。此外,记录传感器的历史记录可能会使寿命终止预后成为可能,在传感器需要更换时提醒用户。内置诊断功能最终将减少气体传感系统的维护需求,并延长传感器的使用寿命。


工业应用的系统设计挑战


特别是在工业环境中,安全性和可靠性至关重要。严格的法规已到位,以确保气体传感系统满足这些要求,并在化工厂等恶劣的工业环境中运行时保持可靠、完整的功能。


电磁兼容性(EMC)是不同电子设备在共同的电磁环境中正常运行的能力,没有相互干扰。例如,EMC中涉及的测试是辐射发射或辐射抗扰度。虽然辐射测试研究系统的不需要的排放以帮助减少它们,但辐射抗扰度测试检查系统在存在其他系统干扰的情况下保持其功能的能力。


EC气体传感器的结构本身会对EMC性能产生负面影响。传感器电极的作用类似于天线,可以接收来自附近电子系统的干扰。这种影响在无线连接的气体传感设备(如便携式工人安全仪器)中更为明显。


EMC测试通常是一个非常耗时的过程,最终可能需要在最终满足要求之前迭代系统设计。这种测试大大增加了产品开发的成本和时间。通过使用经过预先测试以满足EMC要求的集成信号链解决方案,可以减少时间和成本支出。


另一个严肃的考虑因素,也是一个技术挑战,是功能安全。根据定义,功能安全是检测潜在危险情况,从而激活保护或纠正机制以防止任何危险事件。然后,此安全功能提供的风险降低的相对水平定义为安全完整性等级(SIL)。功能安全要求自然包含在行业标准中。


功能安全在工业气体传感应用中的重要性通常与可能存在爆炸性或易燃气体的环境中的安全操作有关。化工厂或采矿设施是此类应用的一个很好的例子。为了符合功能安全标准,系统必须符合功能安全,并达到令人满意的安全完整性水平。


ADI公司的单芯片电化学测量系统


为了应对上述挑战,使客户能够设计出更智能、更准确、更具竞争力的气体传感系统,制造商正在将传感器接口和其他功能集成到微控制器中。例如,ADI公司的ADuCM355是一款单芯片电化学测量系统,面向气体检测和水分析应用(见图5)。它集成了两个电化学测量通道、一个用于传感器诊断的阻抗测量引擎和一个超低功耗、混合信号 26 MHz ARMCortex-M3 微控制器,用于运行用户应用以及传感器诊断和补偿算法。检测微控制器的其他重要功能包括集成ADC、用于产生电化学电池偏置电压的DAC、带TIA放大器的低功耗和低噪声恒电位仪以及集成温度传感器。


集成模拟硬件加速器模块(即波形发生器、数字傅里叶变换模块、数字滤波器)还可以简化传感器诊断测量,如电化学阻抗谱和计时安培法。该系统可以在同一MCU上运行补偿算法、存储校准参数和运行用户应用。MCU在设计时应考虑到EMC要求,并按照EN 50270等行业标准进行预测试。


通过利用电化学诊断技术分析传感器的健康状况

图5.ADuCM355的简化功能框图


两个测量通道的可用性不仅支持最常见的 3 电极气体传感器,还支持 4 电极传感器配置。第四个电极用于诊断目的,或者在双气体传感器的情况下,用作第二个目标气体的工作电极。任何恒电位仪也可以配置为休眠以降低功耗,同时保持传感器偏置电压,从而减少传感器在正常运行之前可能需要建立的时间。对于不需要集成微控制器的应用,可以使用仅前端芯片,例如AD5940。


由于技术创新,我们现在拥有所有必要的知识和工具来有效应对直到最近还阻止电化学气体传感器进入无处不在传感时代的技术挑战。从低成本的无线空气质量监测器到过程控制和工人安全应用,信号链集成和内置诊断功能将使这些传感器得到广泛使用,同时减少维护需求,提高精度,延长传感器寿命并降低成本。

(来源:中电网,作者:Michal Raninec )


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:

用于 EV 充电系统栅极驱动的隔离式 DC/DC 转换器

跨阻放大器的信号频率响应

异步电机混合模型转子磁链观测器学习

RS瑞森半导体-PCB LAYOUT中ESD的对策与LLC方案关键物料选型分享

贸泽电子带你探索汽车设计发展新趋

特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭