-
毫米波无线电:从位到毫米波、从毫米波到位
之前我们分享了毫米波通信部署情形和传播注意事项 以及毫米波的波束合成 ,今天,让我们更详细地讨论位到毫米波无线电,并探讨系统这一部分的挑战。关键是要将位转换为毫米波,再以高保真度转换回来,以支持64 QAM等高阶调制技术,以及未来系统中可能高达256 QAM的技术。
2019-03-19
毫米波 无线电 带宽
-
详解电源滤波器的选择以及注意事项
有人觉得EMI滤波器的插入损耗越高越好,滤波网络的级数越多越好。但这并不是选择滤波器的正确方法。除此之外,级数越多的滤波网络,价格越贵,体积和重量也越大。
2019-03-18
电源滤波器
-
如何通过自举扩展运算放大器工作范围
当现成的运算放大器(op amp)不能提供特定应用所需的信号摆幅范围时,工程师面临两种选择:使用高压运算放大器或设计分立解决方案,不过这两种选择的成本可能都很高。
2019-03-14
运算放大器 自举电源电路 工作原理
-
无源互调PIM测试功率电平由来
在1999年,国际电联技术委员会发布了一个应用于射频组件及系统中无源互调测试的62037标准,在未来12年中,无线技术将从以提供语音的2G系统发展到以高速数据为主的4G 系统。这些4 G系统需要新的网络体系结构与宽带调制方案,才能达到提高网络容量的需求。本文综述了IEX62037标准对系统组件,子系统及...
2019-03-13
PIM 测试 功率电平
-
高分辨率Δ-ΣADC中有关噪声的十大问题
任何高分辨率信号链设计的基本挑战之一是确保系统本底噪声足够低,以便模数转换器(ADC)能够分辨您感兴趣的信号。例如,如果您选择德州仪器ADS1261(一个24位低噪声Δ-ΣADC),您可在2.5 SPS下解析输入低至6 nVRMS,增益为128 V / V的信号。
2019-03-11
ADC 噪声 增益
-
共发射极放大电路分析
在共发射极放大电路中,输入信号是由三极管的基极与发射极两端输入的(在原图里看),再在交流通路里看,输出信号由三极管的集电极和发射极获得。因为对交流信号而言,(即交流通路里)发射极是共同端,所以称为共发射极放大电路。
2019-03-08
共发射极 放大电路 原理
-
详解滤波器分类、技术参数及部分种类介绍
滤波器是射频系统中必不可少的关键部件之一,主要是用来作频率选择----让需要的频率信号通过而反射不需要的干扰频率信号。
2019-03-06
滤波器
-
这种阻抗匹配的思路,你尝试过吗?
RF工程师在设计芯片和天线间的阻抗匹配时,根据数据手册的参数进行匹配设计,最后测试发现实际结果和手册的性能大相径庭,你是否考虑过为什么会出现这么大的差别?匹配调试过程中尝试不同的电容、电感,来回焊接元器件,这样的调试方法我们能改善吗?
2019-03-05
阻抗匹配 RF 电路设计
-
高频、射频傻傻分不清楚?
高频电路说白了就是无线电电路,但是不涉及微波电路(微波用于处理一千兆赫兹以上电路,要从物理学的电磁场入手,跟我们常见的电路很不一样),用于无线电波发射、接收、调制、解调、放大等等。
2019-03-05
高频 射频 数字电路
- 5mW待机功耗突围战!AC-DC电源待机功耗逼近物理极限
- 华为、地平线、大众等企业引领汽车技术变革,来AMTS 2025了解更多汽车行业发展前景
- 关税风暴下车企们的生存法则:涨价+清库+转产三轴突围
- 从智能座舱到驾控大脑:AMTS带你畅游上海车展黑科技海洋
- 智能无线工业传感器设计完全指南
- 硅光技术新突破:意法半导体PIC100开启数据中心高能效时代
- 新唐科技以AI、新能源、汽车电子新品引领行业未来,巡回发布会完美收官!
- 新唐科技以AI、新能源、汽车电子新品引领行业未来,巡回发布会完美收官!
- 硅光技术新突破:意法半导体PIC100开启数据中心高能效时代
- 从智能座舱到驾控大脑:AMTS带你畅游上海车展黑科技海洋
- 关税风暴下车企们的生存法则:涨价+清库+转产三轴突围
- 华为、地平线、大众等企业引领汽车技术变革,来AMTS 2025了解更多汽车行业发展前景
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall