-

如何调整用过线性电位计作为音量控制器的音量?
你曾用过线性电位计作为音量控制器吗?如果你使用过,你可能会发现,音量跳变得非常快。如果想将音量调整得相当小,你可能需要safe-cracker般的灵敏触觉。这时就需要对数电位计。
2020-05-11
线性电位计 音量控制器 音量
-

RF至位解决方案可为材料分析应用提供精密的相位和幅度数据
在分析远程站点的材料时,无法把探针放进材料中,此时,高频收发器为准确量化材料的体积分数提供了一种可行的方法,而且不存在直接接触材料时的不利影响。正交调解器为测量这些应用的幅度和相移提供了一种强大的新方法。这里谈到的接收器信号链采用ADL5380宽带正交解调器、 ADA4940-2超低功耗、低失...
2020-05-11
RF 相位和幅度 数据 高频收发器
-

面向物联网系统的ST连接芯片组或模块可破解射频设计难题
Stastita[1]预测,到2025年,物联网设备数量将超过750亿,远远超过联合国预测的2025年全球81亿人口数量[2]。物联网可能是科技公司的最大推动力量之一。物联网设备最重要的特点便是联网。
2020-05-11
物联网系统 ST 连接芯片 模块 射频设计
-

影响信号完整性的7大原因,你“中枪”了哪个?
当IC输出脚为低电平时,如果此器件不是驱动器, 而是一般器件,则由于输出低电平电流太大, 远大于器件手册给出的值,输出三极管将退出饱和区,进入工作区,使输出低电平抬高很多。
2020-05-09
信号完整性 IC输出脚 线电阻
-

MEMS振动监控简介
MEMS惯性传感器在当今的众多个人电子设备中发挥着重要作用。 小尺寸、低功耗、易集成、强大功能性和卓越性能,这些因素促使着智能手机、游戏控制器、活动跟踪器、数码相框等装置不断创新。 此外,MEMS惯性传感器用于汽车安全系统可显著提高系统可靠性,并降低系统成本,使汽车安全系统能够应用于大...
2020-05-09
MEMS 振动监控
-

利用创造性补偿实现小型放大器驱动200mW负载
在很多应用中,都需要用到能够为负载提供适当功率的放大器;另外还需保持良好的直流精度,而负载的大小决定了目标电路的类型。精密运算放大器能驱动功率要求不足50 mW的负载,而搭配了精密运算放大器输入级和分立功率晶体管输出级的复合放大器可以用来驱动功率要求为数W的负载。 但是,在中等功率范...
2020-05-08
小型放大器 驱动 负载
-

TI SimpleLink无晶振无线MCU助您轻松实现无晶体化
半导体行业的创新往往是在现有产品的基础上加以改进,但在设计方面则追求“少即是多”的理念。在德州仪器,我们研究了SimpleLink™无晶振无线MCU周围的电子材料构建(BOM),并希望在不影响任何特性或功能的情况下移除外部高频晶体。这就是我们革命性的体声波(BAW) 谐振器技术发挥作用之处。
2020-05-08
TI 无线MCU 无晶体化
-

都说晶振是电路的心脏,你真的了解它吗?
之所以说晶振是数字电路的心脏,就是因为所有的数字电路都需要一个稳定的工作时钟信号,最常见的就是用晶振来解决,可以说只要有数字电路的地方就可以见到晶振。
2020-05-07
晶振 电路
-

五张图看懂EMI电磁干扰的传播过程
电磁干扰是电子电路设计过程中最常见的问题,设计师们一直在寻找能够完全消除或降低电磁干扰,也就是EMI的方法。但想要完全的消除EMI的干扰,首先需要的就是了解EMI是什么,它的传播过程是怎样的,本文就将对EMI的传播过程进行一个大致的介绍。
2020-05-06
EMI 电磁干扰
- 国产滤波技术突破:金升阳FC-LxxM系列实现宽电压全场景覆盖
- 空间受限难题有解:Molex SideWize直角连接器重塑高压布线架构
- 信号切换全能手:Pickering 125系列提供了从直流到射频的完整舌簧继电器解决方案
- 射频供电新突破:Flex发布两款高效DC/DC转换器,专攻微波与通信应用
- 电源架构革新:多通道PMIC并联实现大电流输出的设计秘籍
- 百克级 MR 眼镜的 “心脏” 揭秘:万有引力 G-X100 芯片领跑全球
- 告别安全隐患?‘史上最严’充电宝国标即将出台,劣质产品无处遁形
- “芯”品发布|镓未来推出“9mΩ”车规级 GaN FET ,打破功率氮化镓能效天花板!
- Home Bus系统电感选型避坑指南:PoD应用中的关键考量
- 工程师必读:步进电机选型避坑指南,精准匹配应用需求
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall





