-
知识锦集:极点与零点的产生与影响
请问电路中极点与零点的产生与影响,电路中经常要对零极点进行补偿,想问,零点是由于前馈产生的吗?它产生后会对电路造成什么样的影响?是说如果在该频率下,信号通过这两条之路后可以互相抵消还是什么??极点又是怎么产生的呢?是由于反馈吗?那极点对电路的影响又是什么?产生振荡还是什么??...
2014-09-24
极点 零点 电路
-
经验分享:浅谈电感反向电动势
很早以前做单片机时,知道马达,继电器一类电感线圈需要并联一个反向续流二极管,防止电感产生的反向电动势损坏线圈。近来突发思考,在考虑如何彻底 地理解这个反向电动势的产生及方向问题,期间查阅了相关资料,也有了新的一些理解,纠正了以前的误解。在此一并写出,作为总结。
2014-09-24
电感 反向电动势
-
如何精准的设计晶振的匹配电容问题?
单片机晶振旁的2个电容是晶体的匹配电容,只有在外部所接电容为匹配电容的情况下,振荡频率才能保证在标称频率附近的误差范围内。 最好按照所提供的数据来,如果没有,一般是30pF左右。太小了不容易起振。
2014-09-23
晶振 匹配电容
-
大师教你如何检测IGBT好坏简便方法
如何来检测IGBT好坏简便方法?这里大师来教你:将数字万用表拨到二极管测试档,测试IGBT模块c1 e1、c2 e2之间以及栅极G与 e1、 e2之间正反向二极管特性,来判断IGBT模块是否完好。
2014-09-23
IGBT 检测IGBT
-
知识对比:升降压与Cuk斩波电路模块比较分析
升降压电路工作原理过程如下:当可控开关V处于导通状态时,电源E通过可控开关V向电感L供电并使能量存储在电感中,此时流出电源E的电流为i1,方向如图4所示。而电容C此时不仅要使输出电压保持恒定,而且要为负载R供电。
2014-09-23
电路模块 斩波 升降压
-
PCB设计必知:教你如何快速制作电路板
作为一名电路设计工程师,在产品设计开发阶段,您是否遇到过这样的问题:随着电子通讯频率的提高,对PCB线路精度的要求越来越高,择优选取使得产品可靠性要求越来越高等,本文将为大家解决这些问题。
2014-09-23
PCB 电路板
-
技术大爆炸:电压双象限Buck-Boost电路拓扑
在传统全桥电路中,单象限电路被广泛应用。本文中详细介绍了一款新电路,使设计的电源能更广泛应用在各领域中。本文引出双象限的概念,并详细解析电压双象限Buck、Boost、Buck-Boost电路,对开关器件关断和开通分析。
2014-09-23
双象限 Boost
-
技术大爆炸:晶体一秒变晶振,成本直降60%
通常,我们会将“晶体”(Crystal)和“晶振”(Oscillator)都叫成“晶振”,这种叫法并不恰当。无源晶体是有两个引脚的无极性元件。正常工作时,需要借助外部电路产生振荡信号,自身并不需要单独外加电源。而有源晶振一般有四个引脚,其内部集成石英晶体、晶体管、电阻电容等元件。晶振是一个完整的振荡器,...
2014-09-23
晶体 晶振
-
几种可有效开关电源的电磁干扰抑制方法
许多大学及科研单位都进行了开关电源EMI的研究,他们中有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
2014-09-23
开关电源 电磁干扰
- 从数据中心到边缘:Supermicro模块化服务器解决方案覆盖全场景AI负载
- Abracon推出五款紧凑型GNSS天线:峰值增益最高5.0 dBic,兼容四大卫星系统
- 提升电源密度新选择:东芝100V MOSFET助力高效DC-DC转换器设计
- 为汽车HMI而生:艾迈斯欧司朗AS8580通过ASIL B认证,集成SPI接口简化设计
- 加速产品上市:Melexis新型电机驱动芯片大幅降低软件依赖,配置效率提升
- 神眸进驻全球首家人工智能6S店,共创智能守护新未来
- 振动器核心技术突破:国产驱动IC的挑战与机遇
- 强强联合:罗姆与英飞凌共推SiC器件封装兼容方案
- 精于微智于芯:盛思锐传感器微型化技术成果集中亮相
- 迅镭激光亮相第二十五届中国工博会,国际客商聚焦中国激光智造实力
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall