你的位置:首页 > 电源管理 > 正文

变频器用IGBT模块的故障分析及静态测量

发布时间:2022-06-21 来源:可靠性技术交流 责任编辑:wenwei

【导读】IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。


IGB模块原理电路分析


IGBT模块有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。


若在IGB模块T的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。


由此可见,IGBT模块在依照我们国内的技术也可能没有达到市场的一般,我国的IGBT模块依然是依赖进口满足市场。


变频器IGBT模块常见故障处理


1655108424395069.jpg


变频器由主回路、电源回路、IGBT驱动及保护回路、冷却风扇等几部分组成。其结构多为单元化或模块化形式。由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析尤为重要。


1、主回路常见故障分析


主回路主要由三相或单相整流桥、平滑电容器、滤波电容器、IGBT逆变桥、限流电阻、接触器等元件组成。其中许多常见故障是由电解电容引起。电解电容的寿命主要由加在其两端的直流电压和内部温度所决定,在回路设计时已经选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。因此一方面在安装时要考虑适当的环境温度,另一方面可以采取措施减少脉动电流。采用改善功率因数的交流或直流电抗器可以减少脉动电流,从而延长电解电容器的寿命。


在电容器维护时,通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于额定值的80%,绝缘阻抗在5MΩ以下时,应考虑更换电解电容器。


2、主回路典型故障分析


故障现象:变频器在加速、减速或正常运行时出现过电流跳闸。


洛阳变频器销售首先应区分是由于负载原因,还是变频器的原因引起的。如果是变频器的故障,可通过历史记录查询在跳闸时的电流,超过了变频器的额定电流或电子热继电器的设定值,而三相电压和电流是平衡的,则应考虑是否有过载或突变,如电机堵转等。在负载惯性较大时,可适当延长加速时间,此过程对变频器本身并无损坏。若跳闸时的电流,在变频器的额定电流或在电子热继电器的设定范围内,可判断是IGBT模块或相关部分发生故障。首先可以通过测量变频器的主回路输出端子U、V、W,分别与直流侧的P、N端子之间的正反向电阻,来判断IGBT模块是否损坏。如模块未损坏,则是驱动电路出了故障。如果减速时IGBT模块过流或变频器对地短路跳闸,一般是逆变器的上半桥的模块或其驱动电路故障;而加速时IGBT模块过流,则是下半桥的模块或其驱动电路部分故障,发生这些故障的原因,多是由于外部灰尘进入变频器内部或环境潮湿引起。


3、控制回路故障分析


控制回路影响变频器寿命的是电源部分,是平滑电容器和IGBT电路板中的缓冲电容器,其原理与前述相同,但这里的电容器中通过的脉动电流,是基本不受主回路负载影响的定值,故其寿命主要由温度和通电时间决定。由于电容器都焊接在电路板上,通过测量静电容量来判断劣化情况比较困难,一般根据电容器环境温度以及使用时间,来推算是否接近其使用寿命。


电源电路板给控制回路、IGBT驱动电路和表面操作显示板以及风扇等提供电源,这些电源一般都是从主电路输出的直流电压,通过开关电源再分别整流而得到的。因此,某一路电源短路,除了本路的整流电路受损外,还可能影响其他部分的电源,如由于误操作而使控制电源与公共接地短接,致使电源电路板上开关电源部分损坏,风扇电源的短路导致其他电源断电等。一般通过观察电源电路板就比较容易发现。


逻辑控制电路板是变频器的核心,它集中了CPU、MPU、RAM、EEPROM等大规模集成电路,具有很高的可靠性,本身出现故障的概率很小,但有时会因开机而使全部控制端子同时闭合,导致变频器出现EEPROM故障,这只要对EEPROM重新复位就可以了。


IGBT电路板包含驱动和缓冲电路,以及过电压、缺相等保护电路。从逻辑控制板来的PWM信号,通过光耦合将电压驱动信号输入IGBT模块,因而在检测模快的同时,还应测量IGBT模块上的光耦。


4、冷却系统


冷却系统主要包括散热片和冷却风扇。其中冷却风扇寿命较短,临近使用寿命时,风扇产生震动,噪声增大最后停转,变频器出现IGBT过热跳闸。冷却风扇的寿命受陷于轴承,大约为10000~35000h。当变频器连续运转时,需要2~3年更换一次风扇或轴承。为了延长风扇的寿命,一些产品的风扇只在变频器运转时而不是电源开启时运行。


5、外部的电磁感应干扰


洛阳变频器销售如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。减少噪声干扰的具体方法有:变频器周围所有继电器、接触器的控制线圈上,加装防止冲击电压的吸收装置,如RC浪涌吸收器,其接线不能超过20cm;尽量缩短控制回路的5mm以上,与主回路保持10cm以上的间距;变频器距离电动机很远时(超过100m),这时一方面可加大导线截面面积,保证线路压降在2%以内,同时应加装变频器输出电抗器,用来补偿因长距离导线产生的分布电容的充电电流。变频器接地端子应按规定进行接地,必须在专用接地点可靠接地,不能同电焊、动力接地混用;变频器输入端安装无线电噪声滤波器,减少输入高次谐波,从而可降低从电源线到电子设备的噪声影响;同时在变频器的输出端也安装无线电噪声滤波器,以降低其输出端的线路噪声。


变频器IGBT模块检测方法


1、判断极性


首先将万用表拨在R×1KΩ挡,用万用表测量时,若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大,则判断此极为栅极(G )其余两极再用万用表测量,若测得阻值为无穷大,调换表笔后测量阻值较小。在测量阻值较小的一次中,则判断红表笔接的为集电极(C);黑表笔接的为发射极(E)。


2、判断好坏


将万用表拨在R×10KΩ挡,用黑表笔接IGBT 的集电极(C),红表笔接IGBT 的发射极(E),此时万用表的指针在零位。用手指同时触及一下栅极(G)和集电极(C),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极(G)和发射极(E),这时IGBT 被阻断,万用表的指针回零。此时即可判断IGBT 是好的。


3、检测注意事项


任何指针式万用表皆可用于检测IGBT。注意判断IGBT 好坏时,一定要将万用 表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏。


变频器IGBT模块的静态测量


变频器所用IGBT模块为七单元一体化模块(型号为FP15R12KE3G),即三单元整流、三单元逆变和一单元制动。自带模块温度自检单元。用万用表的二极管档测量。


1655108406879429.jpg

FP15R12KE3G模块实物图


1、整流桥的静态测量


三相桥式整流电气原理图见图,测量方法同普通二极管,详见第二章第二节相关内容。整流单元测量参考数据见表1.1。


9.jpg


1.1.2三相桥式整流和IGBT电气原理图


2、逆变续流二极管的静态测量


逆变单元电气原理图见图1.1.2,测量方法同普通二极管。一般情况下,可通过测量IGBT的续流二极管判断其损坏情况,数据参考表1.1.3。


3、制动单元的静态测量


制动单元原理图见图1.1.3。


图中BRK为制动触发端。根据使用环境,用户可在端子P和PB之间接制动电阻,电阻规格的选取参考KVFC+系列变频器用户手册,此处不再赘述。


10.jpg

图1.1.3 制动单元电气原理图


1655108373266722.jpg

表1.1 七单元IGBT测量参考值


快速测量模块小技巧:放在P端子上的表笔不动,另一表笔分别测量R、S、T、PB、U、V、W、N,再对照上表中的参考数值,判断其正常与否。实际测量的数值在与表中的范围或差距别不大即算正常。见图1.1.4。


1655108357918766.jpg

来源:网络(仅供学习 侵删)

图1.1.4IGBT测量过程及结果


来源:可靠性技术交流



免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:


具备出色稳定性的CoolSiC MOSFET M1H

面对电磁辐射干扰,如何轻松进行电子线路设计布局?

临床级可穿戴遭遇电量危机?新型结构传感器IC了解下

USB供电的5.8 GHz RF LNA接收器,带输出功率保护功能

如何有效地比较CMOS开关和固态继电器的性能

特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭