-
开关电源为啥有时候会叫?如何消除?
稳压电源电路输出的开关电流的频率,或周期性脉冲群的周期频率,或毛刺的周期频率落入20~20kHz的音频范围,且周期性变化的电流经过电感线圈而产生交变磁场,使得该电感线圈在交变磁场作用下像“喇叭”一样在几乎固定的频率上产生机械振动而发出啸叫。
2019-09-02
开关电源 啸叫
-
以实例分析FPGA电源设计的特性及规范约束
作为一种复杂的集成电路,FPGA系统供电的电源的设计与一般的电子系统相比,要求也更高,需要具备高精度、高密度、可控性、高效及小型化等的特点。本文系统介绍了FPGA电源的不同特性,同时会通过实例,让工程师更深入地了解各特性的意义,以及FPGA规范约束及其对电源设计的影响,以便快速完成FPGA系...
2019-08-30
FPGA 电源设计
-
关于“陶瓷电容”的秘密!
1900年意大利L.隆巴迪发明陶瓷介质电容器。30年代末人们发现在陶瓷中添加钛酸盐可使介电常数成倍增长,因而制造出较便宜的瓷介质电容器。
2019-08-29
陶瓷电容 分类
-
收藏!5V转3.3V电平的19种方法技巧
标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成:
2019-08-29
LDO稳压器 齐纳二极管
-
利用三极管设计开关电路
很多工程师在上学时被老师讲的三极管的各种电路接法,和小信号模型分析给绕晕了。而且大学的课本大多数都是在讲三极管的放大特性。其实在实际的电路设计中,三极管的很多应用场景只是利用三级管的开关特性,我们往往是运用三极管来实现开关电路,做一些电平转换的功能。
2019-08-28
三极管 设计 开关电路
-
光耦传输比对开关电源的影响
光耦的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。
2019-08-28
光耦传输比 开关电源
-
德州仪器:DC DC 转换器 EMI 的工程师指南(二)——噪声传播和滤波
高开关频率是在电源转换技术发展过程中促进尺寸减小的主要因素。为了符合相关法规,通常需要采用电磁干扰 (EMI) 滤波器,而该滤波器通常在系统总体尺寸和体积中占据很大一部分,因此了解高频转换器的 EMI 特性至关重要。
2019-08-28
DC/DC转换器 EMI 噪声传播 滤波
-
使用电源滤波器的几个常见错误汇总
在实验测试过程中,设计工程师常遇到这样的情况:虽然在设备电源线上接了电源滤波器,但是该设备还是不能通过“传导骚扰电压发射”测试,工程师怀疑滤波器的滤波效果不好,不断更换滤波器,仍不能得到理想的效果。
2019-08-27
电源滤波器
-
掌握MOS管选型技巧,老司机只要七步!
MOS管是电子制造的基本元件,但面对不同封装、不同特性、不同品牌的MOS管时,该如何抉择?有没有省心、省力的遴选方法?下面我们就来看一下老司机是如何做的。
2019-08-26
MOS管 选型技巧
- 如何解决在开关模式电源中使用氮化镓技术时面临的挑战?
- 不同拓扑结构中使用氮化镓技术时面临的挑战有何差异?
- 集成化栅极驱动IC对多电平拓扑电压均衡的破解路径
- 多通道同步驱动技术中的死区时间纳米级调控是如何具体实现的?
- 电压放大器:定义、原理与技术应用全景解析
- 减排新突破!意法半导体新加坡工厂冷却系统升级,护航可持续发展
- 低排放革命!贸泽EIT系列聚焦可持续技术突破
- 双核异构+TSN+NPU三连击!意法新款STM32MP23x重塑工业边缘计算格局
- 聚焦智能听力健康智能化,安森美北京听力学大会展示创新解决方案
- 如何通过3D打印微型磁环来集成EMI抑制?
- 突破物理极限:仪表放大器集成度提升的四大技术路径
- 仪表放大器的斩波稳定技术原理
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall