-
电源PCB电感安放指南
用于电压转换的开关稳压器通常使用电感来临时存储能量,这些电感的尺寸通常非常大,必须在开关稳压器的印刷电路板(PCB)布局中为其安排位置。这项任务并不难,因为通过电感的电流可能会变化,但并非瞬间变化,可能是连续的,通常相对缓慢。
2024-07-03
电源 PCB 电感
-
意法半导体推出高性能、高能效、节省空间的36V工业级和汽车级运算放大器
意法半导体推出了TSB952双运算放大器 (运放)。新产品具有52MHz的增益带宽,在36V电压时,电源电流每通道仅为3.3mA,为注重功耗的设计带来高性能。
2024-07-03
意法半导体 工业级 汽车级 运算放大器
-
既要支持5G 频带又要支持传统频带?你需要一个这样的天线!
本文以 Abracon LLC 的说明性单元为代表,探讨了服务于低频带 5G 频谱以及传统频带的宽带天线。文中展示了如何使用这种类型的天线(无论是看得见的外置单元还是内置的嵌入式单元)来简化设计和物料清单 (BOM),以及在需要时加快到 5G 的升级安装。
2024-07-02
5G 频带 传统频带 天线
-
半导体后端工艺 第八篇:探索不同晶圆级封装的工艺流程
在本系列第七篇文章中,介绍了晶圆级封装的基本流程。本篇文章将侧重介绍不同晶圆级封装方法所涉及的各项工艺。晶圆级封装可分为扇入型晶圆级芯片封装(Fan-In WLCSP)、扇出型晶圆级芯片封装(Fan-Out WLCSP)、重新分配层(RDL)封装、倒片(Flip Chip)封装、及硅通孔(TSV)封装。此外,本文还将介绍应用...
2024-07-02
半导体 晶圆级封装
-
COMSOL 如何通过仿真设计出更安全的电池
当电池超出其正常工作范围、受损或发生短路时,就会像上述极端一样经历热失控。在这个过程中,一个电池单元会不受控制地升温,并引发邻近电池效仿。当过多的热量产生却没有足够的散热来抵消时,整块电池就会出现热失控。这会迅速损坏整个电池组,使其无法使用。坏的情况下,极端高温甚至会引发火灾...
2024-07-02
COMSOL 仿真设计 电池
-
如何借助IPM智能功率模块提高白色家电的能效
变频技术需要使用适当的半导体解决方案。一种行之有效的方法是使用智能功率模块(IPM)。将功率半导体和驱动电路集成到一个模块中,有助于系统设计人员提高系统可靠性。这种解决方案简化了生产装配工序,并且可以在硬件设计方面节省时间和精力。
2024-07-02
IPM 智能功率模块 白色家电
-
请不要忽略氮化镓高效电源的散热优势
在为新应用考虑板外 AC/DC 电源时,尽管基于氮化镓 (GaN) 的替代产品具有更出色的电气性能和能效,但设计人员通常还是会选择硅 (Si) 基部件。这可能是由于长期以来在成本效益方面的假设,也可能是由于长期以来的默认选择。然而,设计人员可能忽略了氮化镓基替代产品对冷却的要求降低。
2024-07-02
氮化镓 电源 散热
- 如何解决在开关模式电源中使用氮化镓技术时面临的挑战?
- 不同拓扑结构中使用氮化镓技术时面临的挑战有何差异?
- 集成化栅极驱动IC对多电平拓扑电压均衡的破解路径
- 多通道同步驱动技术中的死区时间纳米级调控是如何具体实现的?
- 电压放大器:定义、原理与技术应用全景解析
- 减排新突破!意法半导体新加坡工厂冷却系统升级,护航可持续发展
- 低排放革命!贸泽EIT系列聚焦可持续技术突破
- 连偶科技携“中国IP+AIGC+空间计算”三大黑科技首秀西部电博会!
- 仪表放大器如何驱动物联网终端智能感知?
- 仪表放大器如何成为精密测量的幕后英雄?
- 精密信号链技术解析:从原理到高精度系统设计
- 性能与成本的平衡:独石电容原厂品牌深度对比
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall