应用于-40℃极寒地带的温度传感器

专门应用在恶劣复杂环境中,误差范围达到±1°C,具有系统管理总线的温度传感器。

汽车电子瞬态干扰电压保护方案

从电路设计到产品测试,提供汽车电子电路保护领域一站式服务,为您的设计保驾护航。

高密度LED设计达到极高中心束烛光

设计用于实现极高的中心光束蜡烛功率,用于具有最佳亮度和颜色均匀性的清晰光束,可提供高达8000流明的通量范围。

名厂方案:看丰田如何应对锂电池内短路?

2016-12-20 [责任编辑:sherry]
分享到:
0分
【导读】对电动汽车而言,安全永远是第1位的。从今年的各种政策、规范和标准,国家也正是这样的一种思路导向,首先要保证安全性,在此基础上,会进一步对相关的其他性能提指标,如能量密度等。
 
尽管丰田在今年才宣布要正式开发纯电动汽车,不过这个临国的汽车巨头其实在锂电池方面的研究还是很有一套,并且应该很有效果,值得琢磨下。
 
  丰田自1997年率先量产其混合动力汽车Prius以来,便一直在混合动力汽车市场占据绝对的领导地位,2003、2009年又发布了Prius二代和三代,不过都是使用的NiMH电池。
 
  直到2011年Prius Alpha,开始使用锂电,此时的锂电池为一代锂电池。
 
  在2016年,第4代Prius,丰田开始使用最新的二代锂电池。
汽车电子
在锂电池的研发上,丰田的思路是:第1代锂电池解决安全可靠性问题,尤其是强调电芯的自身的安全性;第2代锂电池,强调更好的性能,高能量密度,高功率。
 
  影响锂动力电池的风险因子,丰田分析包括:过充、外短路、碰撞、内短路。
 
  对于过充,系统层面,采用双检测系统,同时对电芯和模组的电压进行检测;对于外短路,系统层面主要是通过电流关断系统和主回路保险丝方案。
 
  电芯层面应对过充和外短路主要思路是,当达到一定温度时,能自动切断电流,这主要是通过对材料、电极和结构来实现。
 
  对于碰撞,总的思路是通过车身和电池包本身的结构强度来进行防护,而在电芯层面,丰田是下了一番工夫研究,采用了“隔热层”(Heat Resistant Layer,HRL)设计。HRL也被用来应对电芯的内短路风险,因为电芯的内短路,目前整个系统层面是毫无应对方案的。
丰田第1代锂电池示意图
隔热层HRL的主要思路为,将HRL置于正负极之间,能够阻止在极端情况下,隔离膜的塌缩,从而即使在急剧温升时也能保证电芯一定的阻值。在第1代锂电池上,HRL被涂在电芯的正极上。
丰田第1代锂电池示意图
丰田第1代锂电池示意图
 
  通过测试验证表明,这种设计方案能较好的应对内短路。
测试方法(改进的JISC8714测试方法)
测试方法(改进的JISC8714测试方法)
测试结果
测试结果
 
  为了验证1代锂电池的安全可靠性,丰田于2006-2009年推出150辆示范车辆去跑,2011年才正式用于量产的Prius Alpha。通过对这些车辆电池数据的收集与分析,基本论证了1代电池的设计方案。在1代电池的基础上,进一步研发满足各种高性能要求的2代锂电池。
关键字:锂电池 短路 汽车电子 
本文链接:http://www.cntronics.com/cp-art/80031905
分享到:
推荐给同仁
0
0
查看全部评论
有人回复时发邮件通知我

关于我们 | About Us | 联系我们 | 隐私政策 | 版权申明 | 投稿信箱

反馈建议:editor@eecnt.com     客服电话:0755-26727371

Copyright © WWW.CNTRONICS.COM  All Rights Reserved 深圳市中电网络技术有限公司 版权所有   粤ICP备10202284号-1 未经书面许可,不得转载本网站内容。