-
低功率开关电容器带隙,第 2 部分
在本期文章中,对传统的带隙电路进行了误差分析,然后解释了如何使用开关电容电路将这些误差降至。图 1 显示了传统的带隙参考实现方案及其相关的误差源。
2024-12-31
开关电容器
-
消除电刷、降低噪音:ROHM 的新型电机驱动器 IC
典型的有刷直流电机是一种非常方便但噪音很大的设备。电刷实现极性反转,也称为“换向”,这样您只需施加恒定的直流电压即可使电机转动。但与这些电刷相关的突然连接和断开会导致瞬态干扰,从而影响连接到电机的电路(通过标准传导路径)以及附近的组件(通过 EMI)。
2024-12-29
消除电刷 噪音 ROHM 电机驱动器 IC
-
ADC 总谐波失真
了解了 ADC 中的缺失代码如何导致 ADC 输出失真。这种失真将导致输入信号的谐波出现在 ADC 的输出中。虽然具有缺失代码的 ADC 确实会产生大量谐波失真,但缺失代码并不是谐波失真的来源。 ADC 输出中的谐波失真是由 ADC 特性中存在的任何非线性引起的。每个实用的 ADC 都具有非线性特性。因此,每个...
2024-12-25
ADC 总谐波 失真
-
功率器件热设计基础(八)——利用瞬态热阻计算二极管浪涌电流
功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。
2024-12-25
功率器件 热设计 瞬态热阻 二极管 浪涌电流
-
功率器件热设计基础(九)——功率半导体模块的热扩散
任何导热材料都有热阻,而且热阻与材料面积成反比,与厚度成正比。按道理说,铜基板也会有额外的热阻,那为什么实际情况是有铜基板的模块散热更好呢?这是因为热的横向扩散带来的好处。
2024-12-22
功率器件 热设计 功率半导体模块 热扩散
-
准 Z 源逆变器的设计
qZSI 旨在解决与可再生能源中电压范围受限相关的挑战,与 CSI 和 VSI 等传统逆变器拓扑不同,qZSI 可以处理功率波动。qZSI 拓扑结构增强了对突然电压尖峰等故障的容忍度,从而提高了电压转换的整体效率和可靠性。QZSI 是从 Z 源逆变器 (ZSI) 拓扑演变而来的,允许在一个阶段进行升压和降压操作。
2024-12-22
逆变器
-
第12讲:三菱电机高压SiC芯片技术
三菱电机开发了高耐压SiC MOSFET,并将其产品化,率先将其应用于驱动铁路车辆的变流器中,是一家在市场上拥有良好业绩记录的SiC器件制造商。本篇带你了解三菱电机高压SiC芯片技术。
2024-12-22
三菱电机 SiC 芯片技术
-
一文看懂电压转换的级联和混合概念
对于需要从高输入电压转换到极低输出电压的应用,有不同的解决方案。一个有趣的例子是从48 V转换到3.3 V。这样的规格不仅在信息技术市场的服务器应用中很常见,在电信应用中同样常见。
2024-12-22
电压转换 级联 混合
-
运算放大器参数的简易测量“指南”
运算放大器是差分输入、单端输出的极高增益放大器,常用于高精度模拟电路,因此必须精确测量其性能。但在开环测量中,其开环增益可能高达107或更高,而拾取、杂散电流或塞贝克(热电偶)效应可能会在放大器输入端产生非常小的电压,这样误差将难以避免。
2024-12-20
运算放大器 测量
- 高精度低噪声 or 大功率强驱动?仪表放大器与功率放大器选型指南
- 高压BMS:电池储能系统的安全守护者与寿命延长引擎
- 2025西部电博会启幕在即,中文域名“西部电博会.网址”正式上线
- IOTE 2025上海物联网展圆满收官!AIoT+5G生态引爆智慧未来
- 如何设计高性能CCM反激式转换器?中等功率隔离应用解析
- 攻克次谐波振荡:CCM反激斜坡补偿的功率分级指南
- 罗姆助力英伟达800V HVDC重塑AI数据中心能源架构
- 安森美SiC技术赋能AI数据中心,助力高能效电源方案
- 驯服电源幽灵:为敏感器件打造超低噪声供电方案
- 芯耀蓉城!西部电博会半导体专区全产业链集结
- 罗姆助力英伟达800V HVDC重塑AI数据中心能源架构
- 攻克次谐波振荡:CCM反激斜坡补偿的功率分级指南
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall