-
安森美的碳化硅技术将整合到宝马集团的下一代电动汽车中
领先于智能电源和智能感知技术的安森美(onsemi,美国纳斯达克上市代号:ON)宣布与宝马集团(BMW)签署长期供货协议(LTSA),将安森美的EliteSiC技术用于这家德国高端汽车制造商的400 V直流母线电动动力传动系统。安森美最新的EliteSiC 750 V M3芯片被集成到一个全桥功率模块中,可提供几百千瓦的...
2023-03-07
安森美 碳化硅 电动汽车
-
电池管理系统创新如何提高电动汽车采用率
要在未来实现全电动化,需要进行电动动力总成系统创新,其中包括BMS、车载充电器和直流/直流转换器以及牵引逆变器。这些系统的核心是使电气化成为可能的半导体元件。
2023-03-07
电池管理系统 电动汽车 采用率
-
高集成度、最大化灵活度的电机控制驱动器
三相永磁无刷直流(以下简称“BLDC”)电机控制需要一个电子换向电路,而传统的有刷直流电机是采用机械自换向的方式。与有刷直流电机不同,BLDC电机没有电刷,无需定期维护或更换,因而不易受到磨损。我们将简要介绍 BLDC 电机的结构和控制,然后介绍三种换向方法:
2023-03-07
电机控制 驱动器
-
在关断状态下不消耗任何电流,也能提供稳定输出电压的设计
单端初级电感转换器(SEPIC)优于反激变压器和升压型线性稳压电路的特性,文中的SEPIC开关调节器能够在多节电池供电条件下,以78%的效率维持稳定的3.3V输出。本设计的优势在于利用一个简单的SEPIC电路即可在关断状态下不消耗任何电流,能够提供非常稳定的输出电压。
2023-03-06
关断状态 输出电压 设计
-
变压器半波整流
对于一个变压器, 它的原边和副边绕制在同一磁路上, 在原边施加正弦交流电, 副边连接负载。两边的电压比值等于匝数之比。 根据功率守恒,负载电流与匝数成反比。 波形都是正弦波, 只是幅值有所不同。
2023-03-06
变压器 半波整流
-
如何确定目标阻抗以实现电源完整性?
阻抗可能是用于普遍概括电子学所有领域信号行为的一项指标。在 PCB 设计中设计具体应用时,我们总是有一些希望实现的目标阻抗,无论是射频走线、差分对,还是阻抗匹配网络。要想确保电源完整性,就要按照 PDN 目标阻抗进行设计,但如何确定 PDN 目标阻抗是一项不小的挑战。
2023-03-04
阻抗 电源完整性
-
如何为多相电源系统设计热平衡均流系统
未来的汽车将车轮上的视听仙境,它将配备环绕式的屏幕和数十个扬声器。即使在行驶中,车辆也可以通过超高速 5G 传输视听内容,乘客可以沉浸在令人难以置信的感官体验之中。为了实现这种内容丰富、高度连接的未来移动范式,新兴的数字驾驶舱系统对计算能力的需求也呈指数级增长。这种增长导致了对功...
2023-03-03
电源系统 热平衡
-
使用隔离式栅极驱动器的设计指南(三):设计要点和PCB布局指南
本设计指南分为三部分,将讲解如何为电力电子应用中的功率开关器件选用合适的隔离栅极驱动器,并介绍实战经验。上两期分别讲解了隔离式栅极驱动器的介绍与选型指南以及使用安森美(onsemi)隔离式栅极驱动器的电源、滤波设计与死区时间控制,本文为第三部分,将为大家带来设计中的要点和PCB布局指南。
2023-03-03
栅极驱动器 设计要点 PCB布局
-
光伏微逆变器应用中的拓扑及工作原理分析
光伏逆变器中使用典型的反激变换器作为DC/DC部分的拓扑,本文简要分析反激变换器在光伏微逆中的应用。
2023-03-03
光伏微逆变器 拓扑 工作原理
- 带宽可调+毫米波集成:紧凑型滤波器技术全景解析
- 电感传感破局线控技术系统!汽车机械架构的数字化革命
- 西南科技盛宴启幕!第十三届西部电博会7月9日蓉城集结
- 硬件加速+安全加密:三合一MCU如何简化电机系统设计
- 智能家电的“动力心脏”:专用电机控制MCU技术全景解析
- 温漂±5ppm的硬核科技:车规薄膜电阻在卫星与6G中的关键作用
- 从误报到精准预警:多光谱MCU重构烟雾探测边界
- 电感传感破局线控技术系统!汽车机械架构的数字化革命
- 聚合物电容全景解析:从纳米结构到千亿市场的国产突围战
- 功率电感四重奏:从笔记本到光伏,解析能效升级的隐形推手
- KEMET T495/T520 vs AVX TAJ钽电容深度对比:如何选择更适合你的设计?
- 西南科技盛宴启幕!第十三届西部电博会7月9日蓉城集结
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车模块抛负载的解决方案
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall